THE MODULI SPACE OF K3 SURFACES

KENTA SUZUKI

1. Basic theory of K3 surfaces

We follow [Deb20, §2].
Definition 1.1. A K3 surface is a compact surface S such that:

- $\Omega_{S}^{2} \simeq \mathcal{O}_{S}$; and
- $H^{1}\left(S, \mathcal{O}_{S}\right)=0$.

We can readily compute the Euler characteristic of \mathcal{O}_{S} using Serre duality:

$$
\chi\left(S, \mathcal{O}_{S}\right)=h^{0}\left(S, \mathcal{O}_{S}\right)-h^{1}\left(S, \mathcal{O}_{S}\right)+h^{2}\left(S, \mathcal{O}_{S}\right)=h^{0}\left(S, \mathcal{O}_{S}\right)-0+h^{0}\left(S, \mathcal{O}_{S}\right)=2
$$

Example 1.2. The surface $x^{4}+y^{4}+z^{4}+u^{4}=0$ in \mathbf{P}^{3} is a K3 surface.
Let S be a K3 surface. The exponential sequence

$$
0 \rightarrow \mathbb{Z} \xrightarrow{2 \pi i} \mathcal{O}_{S} \xrightarrow{\exp } \mathcal{O}_{S}^{\times} \rightarrow 1
$$

gives the long exact sequence in cohomology

$$
\begin{align*}
0 & \rightarrow H^{0}(S, \mathbb{Z})=\mathbb{Z} \rightarrow H^{0}\left(S, \mathcal{O}_{S}\right)=\mathbb{C} \rightarrow H^{0}\left(S, \mathcal{O}_{S}^{\times}\right)=\mathbb{C}^{\times} \\
& \rightarrow H^{1}(S, \mathbb{Z}) \rightarrow H^{1}\left(S, \mathcal{O}_{S}\right)=0 \rightarrow H^{1}\left(S, \mathcal{O}_{S}^{\times}\right)=\operatorname{Pic}(S) \tag{1.3}\\
& \rightarrow H^{2}(S, \mathbb{Z}) \rightarrow H^{2}\left(S, \mathcal{O}_{S}\right) \rightarrow \cdots .
\end{align*}
$$

This implies $H^{1}(S, \mathbb{Z})=0$.
Lemma 1.4. The Picard group of a K3 surface is torsion-free.
Proof. Suppose $\mathcal{M} \in \operatorname{Pic}(S)$ is torsion. Then by Riemann-Roch,

$$
\chi(S, \mathcal{M})=\chi\left(S, \mathcal{O}_{S}\right)+\frac{1}{2} \mathcal{M} \cdot(\mathcal{M}-K)=\chi\left(S, \mathcal{O}_{S}\right)=2
$$

By Serre duality $\chi(S, \mathcal{M})=h^{0}(S, \mathcal{M})+h^{0}\left(S, \mathcal{M}^{-1}\right)-h^{1}(S, \mathcal{M})$, so either \mathcal{M} or \mathcal{M}^{-1} has global sections. But if \mathcal{M} has a global section s, then s is also a global section of $\mathcal{M}^{\otimes m} \simeq \mathcal{O}_{S}$ for some $m>0$, so it is nowhere vanishing. Thus \mathcal{M} is also trivial. The same argument works for when \mathcal{M}^{-1} has a global section.

Thus, by (1.3), the group $H^{2}(S, \mathbb{Z})$ is torsion-free. By Poincaré duality, so is $H_{2}(S, \mathbb{Z})$. Now by the universal coefficient theorem $H_{1}(S, \mathbb{Z})$ is also torsion-free, hence zero (in fact, $\pi_{1}(S)=0$). By Poincaré duality $H^{3}(S, \mathbb{Z})=0$, so the entire singular (co)homology of S is torsion-free.

The topological Euler characteristic of S is $c_{2}(S)=b_{2}(S)+2$. By Noether's formula $12 \chi\left(S, \mathcal{O}_{S}\right)=$ $c_{1}^{2}(S)+c_{2}(S)$ where $c_{1}^{2}(S):=(K, K)=0$, we conclude $c_{2}(S)=24$ and $b_{2}(S)=22$. Thus $H^{2}(S, \mathbb{Z})$ is a free abelian group of rank 22. The intersection form on it is even unimodular, and by Hirzebruch's formula it has signature

$$
\frac{1}{3}\left(c_{1}^{2}(S)-c_{2}(S)\right)=-16
$$

In fact, this implies

$$
H^{2}(S, \mathbb{Z}) \simeq U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2}
$$

where:

- U is the hyperbolic plane, i.e., $\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2}$ with pairing $\left(e_{i}, e_{j}\right)=\delta_{i j}$.
- $E_{8}(-1)$ is $(\Lambda,-q)$ where (Λ, q) is the E_{8}-lattice.
1.1. Properties of line bundles. Let \mathcal{L} be an ample line bundle on S. Then by Kodaira vanishing $H^{1}(S, \mathcal{L})=0$, and $H^{0}\left(S, \mathcal{L}^{-1}\right)=H^{2}(S, \mathcal{L})=0$, hence the Riemann-Roch theorem gives

$$
h^{0}(S, \mathcal{L})=\chi(S, \mathcal{L})=\frac{1}{2} \mathcal{L}^{2}+2
$$

We have the following theorem, which allows us to determine when an ample line bundle is globally generated:

Theorem 1.5. Let \mathcal{L} be an ample line bundle on a $K 3$ surface S. Then \mathcal{L} is generated by global sections if and only if there are no divisors D on S such that $\mathcal{L} . D=1$ and $D^{2}=0$.

When \mathcal{L} is globally generated, it defines a morphism

$$
\varphi_{\mathcal{L}}: S \rightarrow \mathbf{P}^{g},
$$

where $g:=\frac{1}{2} \mathcal{L}^{2}+1$. By Bertini's theorem general elements $C \in|\mathcal{L}|$ are smooth irreducible curves of genus g, and the restriction of $\varphi_{\mathcal{L}}$ to C is the canonical map $C \rightarrow \mathbf{P}^{g-1}$.

One can show:
Theorem 1.6. Let \mathcal{L} be an ample line bundle on a K3 surface. The line bundle \mathcal{L}^{2} is generated by global sections, and \mathcal{L}^{k} is very ample for all $k \geq 3$ (i.e., $\varphi_{\mathcal{L}}$ is an embedding).

Now, we make the following fundamental definition:
Definition 1.7. A polarization on a K3 surface S is an ample class \mathcal{L} in $\operatorname{Pic}(S)$ which is not divisible, i.e., there does not exist another line bundle \mathcal{M} on S and an integer $m>1$ such that $\mathcal{L} \simeq \mathcal{M}^{\otimes m}$. The quantity $g:=\frac{1}{2} \mathcal{L}^{2}+1$ is the genus of a polarized K3 surface (S, \mathcal{L}).
Remark 1.8. For an abelian variety A realized as \mathbb{C}^{g} / Λ, a polarization is an anti-symmetric form $\omega: \Lambda \times \Lambda \rightarrow \mathbb{Z}$ satisfying certain properties, which corresponds to the Chern class of an ample line bundle as an element of $H^{2}(A, \mathbb{Z})=\wedge^{2} \operatorname{hom}(\Lambda, \mathbb{Z})$.

We will be interested in looking at the moduli space of polarized K3 surfaces with fixed genus.

2. The moduli space of polarized K3 surfaces

Fix a genus g, and let (S, \mathcal{L}) be a polarized K3 surface of genus g. Since \mathcal{L}^{3} is ample, S embeds into $\mathbf{P}^{9(g-1)+1}$, with fixed Hilbert polynomial $9(g-1) T^{2}+2$. Thus (S, \mathcal{L}) defines a point in the Hilbert scheme of close subschemes of $\mathbf{P}^{9(g-1)+1}$ with Hilbert polynomial $9(g-1) T^{2}+2$. The subscheme parametrizing K3 surfaces is open and smooth. The problem now is to construct the quotient by PGL $(9(g-1)+2)$. It was prove in [Vie90] that:

Theorem 2.1. Let $g>1$. Then there exists an irreducible 19-dimensional quasi-projective coarse moduli space \mathcal{K}_{g} for polarized complex K3 surfaces of genus g.

We now relate the moduli space \mathcal{K}_{g} to orthogonal Shimura varieties.
Theorem 2.2. Let (S, \mathcal{L}) and $\left(S^{\prime}, \mathcal{L}^{\prime}\right)$ be polarized complex $K 3$ surfaces. If there exists an isometry of lattices

$$
\varphi: H^{2}\left(S^{\prime}, \mathbb{Z}\right) \xrightarrow{\sim} H^{2}(S, \mathbb{Z})
$$

such that $\varphi\left(\mathcal{L}^{\prime}\right)=\mathcal{L}$ and $\varphi_{\mathbb{C}}\left(H^{2,0}\left(S^{\prime}\right)\right)=H^{2,0}(S)$, there exists an isomorphism $\sigma: S \xrightarrow{\sim} S^{\prime}$ such that $\varphi=\sigma^{*}$.

Recall that for a K3 surface S, the singular cohomology $H^{2}(S, \mathbb{Z})$ is isomorphic to $\Lambda_{K 3}:=$ $U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2}$. A polarization gives a primitive vector $h_{g} \in \Lambda_{K 3}$ such that $h_{g}^{2}=2(g-1)$ (in fact, there is a unique $O\left(\Lambda_{K 3}\right)$-orbit of such elements). For example, we can take $h_{g}=e_{1}+(g-1) e_{2}$. Then

$$
\Lambda_{K 3, g}:=h_{g}^{\perp}=U^{\oplus 2} \oplus E_{8}(-1) \oplus I_{1}(2-2 g),
$$

where $I_{1}(2-2 g)=\mathbb{Z} x$ has $x^{2}=2-2 g$. Now the period is $p(S, \mathcal{L}):=\varphi_{\mathbb{C}}\left(H^{2,0}(S)\right) \in \Lambda_{K 3} \otimes \mathbb{C}$, which is in h_{g}^{\perp}, and it satisfies the Hodge-Riemann bilinear relations

$$
p(S, \mathcal{L}) \cdot p(S, \mathcal{L})=0, \quad p(S, \mathcal{L}) \cdot \overline{p(S, \mathcal{L})}>0
$$

Define the 19-dimensional complex manifold

$$
\Omega_{g}:=\left\{[x] \in \mathbf{P}\left(\Lambda_{K 3, g} \otimes \mathbb{C}\right): x \cdot x=0, x \cdot \bar{x}>0\right\}
$$

so $p(S, \mathcal{L}) \in \Omega_{g}$. Now, we obtain the period map

$$
\begin{aligned}
& \wp_{g}: \mathcal{K}_{g} \rightarrow \mathcal{P}_{g}:=\mathrm{SO}\left(\Lambda_{K 3, g}\right) \backslash \Omega_{g} \\
& {[(S, \mathcal{L})] \mapsto[p(S, \mathcal{L})] .}
\end{aligned}
$$

Now, Torelli's theorem can be re-stated as:
Theorem 2.3. Let $g>1$. The period map $\wp_{g}: \mathcal{K}_{g} \rightarrow \mathcal{P}_{g}$ is an open immersion.
One can even explicitly describe the image:
Proposition 2.4. Let $g>1$. The image of \wp_{g} is the complement of one irreducible hypersurface if $g \not \equiv 2(\bmod 4)$ and of two irreducible hypersurfaces if $g \equiv 2(\bmod 4)$.

We see that the quotient \mathcal{P}_{g} already looks like a Shimura variety! Indeed, Ω_{g} is the $\mathrm{SO}(2,19)(\mathbb{R})$ conjugacy classes of Hodge structures $h: \mathbb{S} \rightarrow \mathrm{SO}(2,19)_{\mathbb{R}}$ for which $\pm \psi$ is a polarization and the Hodge numbers are $h^{-1,1}=h^{1,-1}=1$ and $h^{0,0}=19$.

3. Arithmetic aspects

The period map can be enhanced to the following setting: for certain compact open subgroups $\mathbb{K} \subset \operatorname{SO}(2,19)\left(\mathbf{A}_{f}\right)$, define the notion of a level K-structure on K 3 surfaces, and let $\mathcal{K}_{g, \mathbb{K}}$ be the moduli space of K3 surfaces of genus g and with level \mathbb{K}-structure. The moduli space is a finite étale cover of \mathcal{K}_{g}. Now, for such a compact open subgroup, the period map is a morphism

$$
\wp_{g, \mathbb{K}}: \mathcal{K}_{g, \mathbb{K}} \otimes \mathbb{C} \rightarrow S h_{\mathbb{K}}(\mathrm{SO}(2,19), \Omega)_{\mathbb{C}}
$$

where $S h_{\mathbb{K}}(\mathrm{SO}(2,19), \Omega)_{\mathbb{C}}$ is the Shimura variety associated to $\mathrm{SO}(2,19)$. Both sides of the morphisms are defined over \mathbb{Q}, and the main theorem of [Riz05] states:

Theorem 3.1. The period morphism $\wp_{g, \mathbb{K}}$ descends to a morphism

$$
\mathcal{K}_{g, \mathbb{K}} \otimes \mathbb{Q} \rightarrow S h_{\mathbb{K}}(\mathrm{SO}(2,19), \Omega) .
$$

We outline the construction of the period map in the simplest case where $\mathbb{K}_{n}=\{g \in \mathrm{SO}(2,19)(\widehat{\mathbb{Z}})$: $g \equiv 1(\bmod n)\}$.
Definition 3.2. Let $(\pi: X \rightarrow S, \mathcal{L})$ be a polarized K3 space of genus g. Then a level \mathbb{K}_{n}-structure is an isomorphism α_{n} between the orthogonal complement of $c_{1}(\mathcal{L})$ in $R_{e t}^{2} \pi_{*}(\mathbb{Z} / n \mathbb{Z})(1)$ with $\Lambda_{K 3, g}$. The moduli space of polarized K 3 surfaces of genus g with a level \mathbb{K}_{n}-structure is denoted $\overline{\mathcal{K}_{g, \mathbb{K}_{n}}}$.

On the other hand, the Shimura variety $S h_{\mathbb{K}_{n}}\left(\mathrm{SO}(2,19), \Omega_{g}\right)=G(\mathbb{Q}) \backslash \Omega_{g} \times G\left(\mathbf{A}_{f}\right) / \mathbb{K}_{n}$ admits an interpretation as the moduli space of 4 -tuples $\left((W, h), s, \alpha \mathbb{K}_{n}\right)$ where:
(1) (W, h) is a orthogonal space over \mathbb{Q} isomorphic to the quadratic space with quadratic form $-x_{1}^{2}-x_{2}^{2}+x_{3}^{2}+\cdots+x_{20}^{2}+(g-1) x_{21}^{2}$
(2) $s: \mathbb{S} \rightarrow \mathrm{SO}(W, h)$ is a Hodge structure with $h^{-1,1}=h^{1,-1}=1$ and $h^{0,0}=19$
(3) Orthogonal isomorphisms $\alpha: V_{2 d} \otimes \mathbb{A}_{f} \rightarrow W \otimes \mathbb{A}_{f}$, modulo \mathbb{K}_{n}.

Now, to define $\mathcal{K}_{g, \mathbb{K}_{n}} \rightarrow S h_{\mathbb{K}_{n}}\left(\mathrm{SO}(2,19), \Omega_{g}^{ \pm}\right)$, we take a polarized K 3 surface (X, \mathcal{L}) and a level structure $\alpha: H^{2}(S, \mathbb{Z} / n)(1) \simeq \Lambda_{K 3, g} \otimes \mathbb{Z} / n$. Then we may choose a lift of α to an isomorphism $\widetilde{\alpha}: H^{2}(S, \widehat{\mathbb{Z}})(1) \simeq \Lambda_{K 3, g} \otimes \widehat{\mathbb{Z}}$, which is now well-defined up to \mathbb{K}_{n}.

References

[Deb20] Olivier Debarre, Hyperkähler manifolds, 2020.
[Riz05] Jordan Rizov, Complex multiplication for k3 surfaces, 2005.
[Vie90] Eckart Viehweg, Weak positivity and the stability of certain Hilbert points. III, Invent. Math. 101 (1990), no. 3, 521-543. MR 1062794
M.I.T., 77 Massachusetts Avenue, Cambridge, MA, USA

Email address: kjsuzuki@mit.edu

