
THE MODULI SPACE OF K3 SURFACES

KENTA SUZUKI

1. Basic theory of K3 surfaces

We follow [Deb20, §2].

Definition 1.1. A K3 surface is a compact surface S such that:

• Ω2
S ≃ OS ; and

• H1(S,OS) = 0.

We can readily compute the Euler characteristic of OS using Serre duality:

χ(S,OS) = h0(S,OS)− h1(S,OS) + h2(S,OS) = h0(S,OS)− 0 + h0(S,OS) = 2.

Example 1.2. The surface x4 + y4 + z4 + u4 = 0 in P3 is a K3 surface.

Let S be a K3 surface. The exponential sequence

0 → Z 2πi−−→ OS
exp−−→ O×

S → 1

gives the long exact sequence in cohomology

0 →H0(S,Z) = Z → H0(S,OS) = C → H0(S,O×
S ) = C×

→H1(S,Z) → H1(S,OS) = 0 → H1(S,O×
S ) = Pic(S)(1.3)

→H2(S,Z) → H2(S,OS) → · · · .

This implies H1(S,Z) = 0.

Lemma 1.4. The Picard group of a K3 surface is torsion-free.

Proof. Suppose M ∈ Pic(S) is torsion. Then by Riemann-Roch,

χ(S,M) = χ(S,OS) +
1

2
M.(M−K) = χ(S,OS) = 2.

By Serre duality χ(S,M) = h0(S,M) + h0(S,M−1) − h1(S,M), so either M or M−1 has global
sections. But if M has a global section s, then s is also a global section of M⊗m ≃ OS for some
m > 0, so it is nowhere vanishing. Thus M is also trivial. The same argument works for when
M−1 has a global section. □

Thus, by (1.3), the group H2(S,Z) is torsion-free. By Poincaré duality, so is H2(S,Z). Now by
the universal coefficient theorem H1(S,Z) is also torsion-free, hence zero (in fact, π1(S) = 0). By
Poincaré duality H3(S,Z) = 0, so the entire singular (co)homology of S is torsion-free.

The topological Euler characteristic of S is c2(S) = b2(S)+2. By Noether’s formula 12χ(S,OS) =
c21(S)+c2(S) where c

2
1(S) := (K,K) = 0, we conclude c2(S) = 24 and b2(S) = 22. Thus H2(S,Z) is

a free abelian group of rank 22. The intersection form on it is even unimodular, and by Hirzebruch’s
formula it has signature

1

3
(c21(S)− c2(S)) = −16.

In fact, this implies
H2(S,Z) ≃ U⊕3 ⊕ E8(−1)⊕2

where:
1
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• U is the hyperbolic plane, i.e., Ze1 ⊕ Ze2 with pairing (ei, ej) = δij .
• E8(−1) is (Λ,−q) where (Λ, q) is the E8-lattice.

1.1. Properties of line bundles. Let L be an ample line bundle on S. Then by Kodaira vanishing
H1(S,L) = 0, and H0(S,L−1) = H2(S,L) = 0, hence the Riemann-Roch theorem gives

h0(S,L) = χ(S,L) = 1

2
L2 + 2.

We have the following theorem, which allows us to determine when an ample line bundle is globally
generated:

Theorem 1.5. Let L be an ample line bundle on a K3 surface S. Then L is generated by global
sections if and only if there are no divisors D on S such that L.D = 1 and D2 = 0.

When L is globally generated, it defines a morphism

φL : S → Pg,

where g := 1
2L

2 + 1. By Bertini’s theorem general elements C ∈ |L| are smooth irreducible curves

of genus g, and the restriction of φL to C is the canonical map C → Pg−1.
One can show:

Theorem 1.6. Let L be an ample line bundle on a K3 surface. The line bundle L2 is generated
by global sections, and Lk is very ample for all k ≥ 3 (i.e., φL is an embedding).

Now, we make the following fundamental definition:

Definition 1.7. A polarization on a K3 surface S is an ample class L in Pic(S) which is not
divisible, i.e., there does not exist another line bundle M on S and an integer m > 1 such that
L ≃ M⊗m. The quantity g := 1

2L
2 + 1 is the genus of a polarized K3 surface (S,L).

Remark 1.8. For an abelian variety A realized as Cg/Λ, a polarization is an anti-symmetric form
ω : Λ× Λ → Z satisfying certain properties, which corresponds to the Chern class of an ample line
bundle as an element of H2(A,Z) = ∧2 hom(Λ,Z).

We will be interested in looking at the moduli space of polarized K3 surfaces with fixed genus.

2. The moduli space of polarized K3 surfaces

Fix a genus g, and let (S,L) be a polarized K3 surface of genus g. Since L3 is ample, S embeds

into P9(g−1)+1, with fixed Hilbert polynomial 9(g − 1)T 2 + 2. Thus (S,L) defines a point in the

Hilbert scheme of close subschemes of P9(g−1)+1 with Hilbert polynomial 9(g − 1)T 2 + 2. The
subscheme parametrizing K3 surfaces is open and smooth. The problem now is to construct the
quotient by PGL(9(g − 1) + 2). It was prove in [Vie90] that:

Theorem 2.1. Let g > 1. Then there exists an irreducible 19-dimensional quasi-projective coarse
moduli space Kg for polarized complex K3 surfaces of genus g.

We now relate the moduli space Kg to orthogonal Shimura varieties.

Theorem 2.2. Let (S,L) and (S′,L′) be polarized complex K3 surfaces. If there exists an isometry
of lattices

φ : H2(S′,Z) ∼−→ H2(S,Z)

such that φ(L′) = L and φC(H
2,0(S′)) = H2,0(S), there exists an isomorphism σ : S

∼−→ S′ such
that φ = σ∗.
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Recall that for a K3 surface S, the singular cohomology H2(S,Z) is isomorphic to ΛK3 :=
U⊕3⊕E8(−1)⊕2. A polarization gives a primitive vector hg ∈ ΛK3 such that h2g = 2(g−1) (in fact,
there is a unique O(ΛK3)-orbit of such elements). For example, we can take hg = e1 + (g − 1)e2.
Then

ΛK3,g := h⊥g = U⊕2 ⊕ E8(−1)⊕ I1(2− 2g),

where I1(2 − 2g) = Zx has x2 = 2 − 2g. Now the period is p(S,L) := φC(H
2,0(S)) ∈ ΛK3 ⊗ C,

which is in h⊥g , and it satisfies the Hodge-Riemann bilinear relations

p(S,L) · p(S,L) = 0, p(S,L) · p(S,L) > 0.

Define the 19-dimensional complex manifold

Ωg := {[x] ∈ P(ΛK3,g ⊗ C) : x · x = 0, x · x > 0},
so p(S,L) ∈ Ωg. Now, we obtain the period map

℘g : Kg → Pg := SO(ΛK3,g)\Ωg

[(S,L)] 7→ [p(S,L)].
Now, Torelli’s theorem can be re-stated as:

Theorem 2.3. Let g > 1. The period map ℘g : Kg → Pg is an open immersion.

One can even explicitly describe the image:

Proposition 2.4. Let g > 1. The image of ℘g is the complement of one irreducible hypersurface
if g ̸≡ 2 (mod 4) and of two irreducible hypersurfaces if g ≡ 2 (mod 4).

We see that the quotient Pg already looks like a Shimura variety! Indeed, Ωg is the SO(2, 19)(R)-
conjugacy classes of Hodge structures h : S → SO(2, 19)R for which ±ψ is a polarization and the
Hodge numbers are h−1,1 = h1,−1 = 1 and h0,0 = 19.

3. Arithmetic aspects

The period map can be enhanced to the following setting: for certain compact open subgroups
K ⊂ SO(2, 19)(Af ), define the notion of a level K-structure on K3 surfaces, and let Kg,K be the
moduli space of K3 surfaces of genus g and with level K-structure. The moduli space is a finite
étale cover of Kg. Now, for such a compact open subgroup, the period map is a morphism

℘g,K : Kg,K ⊗ C → ShK(SO(2, 19),Ω)C

where ShK(SO(2, 19),Ω)C is the Shimura variety associated to SO(2, 19). Both sides of the mor-
phisms are defined over Q, and the main theorem of [Riz05] states:

Theorem 3.1. The period morphism ℘g,K descends to a morphism

Kg,K ⊗Q → ShK(SO(2, 19),Ω).

We outline the construction of the period map in the simplest case whereKn = {g ∈ SO(2, 19)(Ẑ) :
g ≡ 1 (mod n)}.

Definition 3.2. Let (π : X → S,L) be a polarized K3 space of genus g. Then a level Kn-structure
is an isomorphism αn between the orthogonal complement of c1(L) in R2

etπ∗(Z/nZ)(1) with ΛK3,g.

The moduli space of polarized K3 surfaces of genus g with a level Kn-structure is denoted Kg,Kn .

On the other hand, the Shimura variety ShKn(SO(2, 19),Ωg) = G(Q)\Ωg × G(Af )/Kn admits
an interpretation as the moduli space of 4-tuples ((W,h), s, αKn) where:

(1) (W,h) is a orthogonal space over Q isomorphic to the quadratic space with quadratic form
−x21 − x22 + x23 + · · ·+ x220 + (g − 1)x221
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(2) s : S → SO(W,h) is a Hodge structure with h−1,1 = h1,−1 = 1 and h0,0 = 19
(3) Orthogonal isomorphisms α : V2d ⊗ Af →W ⊗ Af , modulo Kn.

Now, to define Kg,Kn → ShKn(SO(2, 19),Ω±
g ), we take a polarized K3 surface (X,L) and a level

structure α : H2(S,Z/n)(1) ≃ ΛK3,g ⊗ Z/n. Then we may choose a lift of α to an isomorphism

α̃ : H2(S, Ẑ)(1) ≃ ΛK3,g ⊗ Ẑ, which is now well-defined up to Kn.
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