THE MODULI SPACE OF K3 SURFACES

KENTA SUZUKI

1. Basic theory of K3 surfaces

We follow $[Deb20, \S2]$.

Definition 1.1. A K3 surface is a compact surface S such that:

- $\Omega_S^2 \simeq \mathcal{O}_S$; and $H^1(S, \mathcal{O}_S) = 0.$

We can readily compute the Euler characteristic of \mathcal{O}_S using Serre duality:

$$\chi(S, \mathcal{O}_S) = h^0(S, \mathcal{O}_S) - h^1(S, \mathcal{O}_S) + h^2(S, \mathcal{O}_S) = h^0(S, \mathcal{O}_S) - 0 + h^0(S, \mathcal{O}_S) = 2$$

Example 1.2. The surface $x^4 + y^4 + z^4 + u^4 = 0$ in \mathbf{P}^3 is a K3 surface.

Let S be a K3 surface. The exponential sequence

$$0 \to \mathbb{Z} \xrightarrow{2\pi i} \mathcal{O}_S \xrightarrow{\exp} \mathcal{O}_S^{\times} \to 1$$

gives the long exact sequence in cohomology

$$0 \to H^0(S, \mathbb{Z}) = \mathbb{Z} \to H^0(S, \mathcal{O}_S) = \mathbb{C} \to H^0(S, \mathcal{O}_S^{\times}) = \mathbb{C}^{\times}$$

$$\to H^1(S,\mathbb{Z}) \to H^1(S,\mathcal{O}_S) = 0 \to H^1(S,\mathcal{O}_S^{\times}) = \operatorname{Pic}(S)$$

 $\rightarrow H^2(S,\mathbb{Z}) \rightarrow H^2(S,\mathcal{O}_S) \rightarrow \cdots$

This implies $H^1(S, \mathbb{Z}) = 0$.

Lemma 1.4. The Picard group of a K3 surface is torsion-free.

Proof. Suppose $\mathcal{M} \in \operatorname{Pic}(S)$ is torsion. Then by Riemann-Roch,

$$\chi(S, \mathcal{M}) = \chi(S, \mathcal{O}_S) + \frac{1}{2}\mathcal{M}.(\mathcal{M} - K) = \chi(S, \mathcal{O}_S) = 2.$$

By Serre duality $\chi(S, \mathcal{M}) = h^0(S, \mathcal{M}) + h^0(S, \mathcal{M}^{-1}) - h^1(S, \mathcal{M})$, so either \mathcal{M} or \mathcal{M}^{-1} has global sections. But if \mathcal{M} has a global section s, then s is also a global section of $\mathcal{M}^{\otimes m} \simeq \mathcal{O}_S$ for some m > 0, so it is nowhere vanishing. Thus \mathcal{M} is also trivial. The same argument works for when \mathcal{M}^{-1} has a global section.

Thus, by (1.3), the group $H^2(S,\mathbb{Z})$ is torsion-free. By Poincaré duality, so is $H_2(S,\mathbb{Z})$. Now by the universal coefficient theorem $H_1(S,\mathbb{Z})$ is also torsion-free, hence zero (in fact, $\pi_1(S) = 0$). By Poincaré duality $H^3(S,\mathbb{Z}) = 0$, so the entire singular (co)homology of S is torsion-free.

The topological Euler characteristic of S is $c_2(S) = b_2(S) + 2$. By Noether's formula $12\chi(S, \mathcal{O}_S) =$ $c_1^2(S) + c_2(S)$ where $c_1^2(S) := (K, K) = 0$, we conclude $c_2(S) = 24$ and $b_2(S) = 22$. Thus $H^2(S, \mathbb{Z})$ is a free abelian group of rank 22. The intersection form on it is even unimodular, and by Hirzebruch's formula it has signature

$$\frac{1}{3}(c_1^2(S) - c_2(S)) = -16.$$
$$H^2(S, \mathbb{Z}) \simeq U^{\oplus 3} \oplus E_8(-1)^{\oplus 2}$$

In fact, this implies

where:

(1.3)

KENTA SUZUKI

- U is the hyperbolic plane, i.e., $\mathbb{Z}e_1 \oplus \mathbb{Z}e_2$ with pairing $(e_i, e_j) = \delta_{ij}$.
- $E_8(-1)$ is $(\Lambda, -q)$ where (Λ, q) is the E_8 -lattice.

1.1. Properties of line bundles. Let \mathcal{L} be an ample line bundle on S. Then by Kodaira vanishing $H^1(S, \mathcal{L}) = 0$, and $H^0(S, \mathcal{L}^{-1}) = H^2(S, \mathcal{L}) = 0$, hence the Riemann-Roch theorem gives

$$h^0(S, \mathcal{L}) = \chi(S, \mathcal{L}) = \frac{1}{2}\mathcal{L}^2 + 2.$$

We have the following theorem, which allows us to determine when an ample line bundle is globally generated:

Theorem 1.5. Let \mathcal{L} be an ample line bundle on a K3 surface S. Then \mathcal{L} is generated by global sections if and only if there are no divisors D on S such that $\mathcal{L}.D = 1$ and $D^2 = 0$.

When \mathcal{L} is globally generated, it defines a morphism

$$\varphi_{\mathcal{L}} \colon S \to \mathbf{P}^g,$$

where $g := \frac{1}{2}\mathcal{L}^2 + 1$. By Bertini's theorem general elements $C \in |\mathcal{L}|$ are smooth irreducible curves of genus g, and the restriction of $\varphi_{\mathcal{L}}$ to C is the canonical map $C \to \mathbf{P}^{g-1}$.

One can show:

Theorem 1.6. Let \mathcal{L} be an ample line bundle on a K3 surface. The line bundle \mathcal{L}^2 is generated by global sections, and \mathcal{L}^k is very ample for all $k \geq 3$ (i.e., $\varphi_{\mathcal{L}}$ is an embedding).

Now, we make the following fundamental definition:

Definition 1.7. A polarization on a K3 surface S is an ample class \mathcal{L} in Pic(S) which is not divisible, i.e., there does not exist another line bundle \mathcal{M} on S and an integer m > 1 such that $\mathcal{L} \simeq \mathcal{M}^{\otimes m}$. The quantity $g := \frac{1}{2}\mathcal{L}^2 + 1$ is the genus of a polarized K3 surface (S, \mathcal{L}) .

Remark 1.8. For an abelian variety A realized as \mathbb{C}^g/Λ , a *polarization* is an anti-symmetric form $\omega: \Lambda \times \Lambda \to \mathbb{Z}$ satisfying certain properties, which corresponds to the Chern class of an ample line bundle as an element of $H^2(A, \mathbb{Z}) = \wedge^2 \hom(\Lambda, \mathbb{Z})$.

We will be interested in looking at the moduli space of polarized K3 surfaces with fixed genus.

2. The moduli space of polarized K3 surfaces

Fix a genus g, and let (S, \mathcal{L}) be a polarized K3 surface of genus g. Since \mathcal{L}^3 is ample, S embeds into $\mathbf{P}^{9(g-1)+1}$, with fixed Hilbert polynomial $9(g-1)T^2 + 2$. Thus (S, \mathcal{L}) defines a point in the Hilbert scheme of close subschemes of $\mathbf{P}^{9(g-1)+1}$ with Hilbert polynomial $9(g-1)T^2 + 2$. The subscheme parametrizing K3 surfaces is open and smooth. The problem now is to construct the quotient by $\mathrm{PGL}(9(g-1)+2)$. It was prove in [Vie90] that:

Theorem 2.1. Let g > 1. Then there exists an irreducible 19-dimensional quasi-projective coarse moduli space \mathcal{K}_q for polarized complex K3 surfaces of genus g.

We now relate the moduli space \mathcal{K}_g to orthogonal Shimura varieties.

Theorem 2.2. Let (S, \mathcal{L}) and (S', \mathcal{L}') be polarized complex K3 surfaces. If there exists an isometry of lattices

$$\varphi \colon H^2(S',\mathbb{Z}) \xrightarrow{\sim} H^2(S,\mathbb{Z})$$

such that $\varphi(\mathcal{L}') = \mathcal{L}$ and $\varphi_{\mathbb{C}}(H^{2,0}(S')) = H^{2,0}(S)$, there exists an isomorphism $\sigma \colon S \xrightarrow{\sim} S'$ such that $\varphi = \sigma^*$.

Recall that for a K3 surface S, the singular cohomology $H^2(S,\mathbb{Z})$ is isomorphic to $\Lambda_{K3} := U^{\oplus 3} \oplus E_8(-1)^{\oplus 2}$. A polarization gives a primitive vector $h_g \in \Lambda_{K3}$ such that $h_g^2 = 2(g-1)$ (in fact, there is a unique $O(\Lambda_{K3})$ -orbit of such elements). For example, we can take $h_g = e_1 + (g-1)e_2$. Then

$$\Lambda_{K3,g} := h_g^{\perp} = U^{\oplus 2} \oplus E_8(-1) \oplus I_1(2-2g),$$

where $I_1(2-2g) = \mathbb{Z}x$ has $x^2 = 2-2g$. Now the *period* is $p(S, \mathcal{L}) := \varphi_{\mathbb{C}}(H^{2,0}(S)) \in \Lambda_{K3} \otimes \mathbb{C}$, which is in h_q^{\perp} , and it satisfies the Hodge-Riemann bilinear relations

$$p(S, \mathcal{L}) \cdot p(S, \mathcal{L}) = 0,$$
 $p(S, \mathcal{L}) \cdot p(S, \mathcal{L}) > 0$

Define the 19-dimensional complex manifold

$$\Omega_g := \{ [x] \in \mathbf{P}(\Lambda_{K3,g} \otimes \mathbb{C}) : x \cdot x = 0, x \cdot \overline{x} > 0 \},\$$

so $p(S, \mathcal{L}) \in \Omega_g$. Now, we obtain the *period map*

$$\wp_g \colon \mathcal{K}_g \to \mathcal{P}_g := \mathrm{SO}(\Lambda_{K3,g}) \backslash \Omega_g$$
$$[(S,\mathcal{L})] \mapsto [p(S,\mathcal{L})].$$

Now, Torelli's theorem can be re-stated as:

Theorem 2.3. Let g > 1. The period map $\wp_q \colon \mathcal{K}_q \to \mathcal{P}_q$ is an open immersion.

One can even explicitly describe the image:

Proposition 2.4. Let g > 1. The image of \wp_g is the complement of one irreducible hypersurface if $g \not\equiv 2 \pmod{4}$ and of two irreducible hypersurfaces if $g \equiv 2 \pmod{4}$.

We see that the quotient \mathcal{P}_g already looks like a Shimura variety! Indeed, Ω_g is the SO(2, 19)(\mathbb{R})conjugacy classes of Hodge structures $h: \mathbb{S} \to SO(2, 19)_{\mathbb{R}}$ for which $\pm \psi$ is a polarization and the Hodge numbers are $h^{-1,1} = h^{1,-1} = 1$ and $h^{0,0} = 19$.

3. Arithmetic aspects

The period map can be enhanced to the following setting: for certain compact open subgroups $\mathbb{K} \subset \mathrm{SO}(2,19)(\mathbf{A}_f)$, define the notion of a level K-structure on K3 surfaces, and let $\mathcal{K}_{g,\mathbb{K}}$ be the moduli space of K3 surfaces of genus g and with level \mathbb{K} -structure. The moduli space is a finite étale cover of \mathcal{K}_g . Now, for such a compact open subgroup, the period map is a morphism

$$\wp_{q,\mathbb{K}} \colon \mathcal{K}_{q,\mathbb{K}} \otimes \mathbb{C} \to Sh_{\mathbb{K}}(\mathrm{SO}(2,19),\Omega)_{\mathbb{C}}$$

where $Sh_{\mathbb{K}}(SO(2, 19), \Omega)_{\mathbb{C}}$ is the Shimura variety associated to SO(2, 19). Both sides of the morphisms are defined over \mathbb{Q} , and the main theorem of [Riz05] states:

Theorem 3.1. The period morphism $\wp_{g,\mathbb{K}}$ descends to a morphism

$$\mathcal{K}_{q,\mathbb{K}} \otimes \mathbb{Q} \to Sh_{\mathbb{K}}(\mathrm{SO}(2,19),\Omega).$$

We outline the construction of the period map in the simplest case where $\mathbb{K}_n = \{g \in \mathrm{SO}(2, 19)(\widehat{\mathbb{Z}}) : g \equiv 1 \pmod{n}\}.$

Definition 3.2. Let $(\pi: X \to S, \mathcal{L})$ be a polarized K3 space of genus g. Then a level \mathbb{K}_n -structure is an isomorphism α_n between the orthogonal complement of $c_1(\mathcal{L})$ in $R^2_{et}\pi_*(\mathbb{Z}/n\mathbb{Z})(1)$ with $\Lambda_{K3,g}$. The moduli space of polarized K3 surfaces of genus g with a level \mathbb{K}_n -structure is denoted $\overline{\mathcal{K}_{g,\mathbb{K}_n}}$.

On the other hand, the Shimura variety $Sh_{\mathbb{K}_n}(\mathrm{SO}(2,19),\Omega_g) = G(\mathbb{Q}) \setminus \Omega_g \times G(\mathbf{A}_f) / \mathbb{K}_n$ admits an interpretation as the moduli space of 4-tuples $((W,h), s, \alpha \mathbb{K}_n)$ where:

(1) (W, h) is a orthogonal space over \mathbb{Q} isomorphic to the quadratic space with quadratic form $-x_1^2 - x_2^2 + x_3^2 + \cdots + x_{20}^2 + (g-1)x_{21}^2$

KENTA SUZUKI

- (2) $s: \mathbb{S} \to \mathrm{SO}(W, h)$ is a Hodge structure with $h^{-1,1} = h^{1,-1} = 1$ and $h^{0,0} = 19$
- (3) Orthogonal isomorphisms $\alpha \colon V_{2d} \otimes \mathbb{A}_f \to W \otimes \mathbb{A}_f$, modulo \mathbb{K}_n .

Now, to define $\mathcal{K}_{g,\mathbb{K}_n} \to Sh_{\mathbb{K}_n}(\mathrm{SO}(2,19),\Omega_g^{\pm})$, we take a polarized K3 surface (X,\mathcal{L}) and a level structure $\alpha \colon H^2(S,\mathbb{Z}/n)(1) \simeq \Lambda_{K3,g} \otimes \mathbb{Z}/n$. Then we may choose a lift of α to an isomorphism $\widetilde{\alpha} \colon H^2(S,\widehat{\mathbb{Z}})(1) \simeq \Lambda_{K3,g} \otimes \widehat{\mathbb{Z}}$, which is now well-defined up to \mathbb{K}_n .

References

[Deb20] Olivier Debarre, Hyperkähler manifolds, 2020.

- [Riz05] Jordan Rizov, Complex multiplication for k3 surfaces, 2005.
- [Vie90] Eckart Viehweg, Weak positivity and the stability of certain Hilbert points. III, Invent. Math. 101 (1990), no. 3, 521–543. MR 1062794

M.I.T., 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA, USA *Email address*: kjsuzuki@mit.edu