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Abstract. We study the automorphic period associated to a G-Hamiltonian variety M

whose dual is M̌ = T ∗(Ǧ/Ľ), where Ǧ is a general linear group and Ľ is a Levi subgroup.

For certain cuspidal Eisenstein series, we prove that their period is equal to a finite sum

of special values of L-functions. This sum is indexed by the fixed points of the associated

extended L-parameter on M̌ , confirming a conjecture by Ben-Zvi-Sakellaridis-Venkatesh in

this case.
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1. Introduction

1.1. Relative Langlands conjectures of BZSV. The relative Langlands program investi-

gates the relation between periods of automorphic forms and special values of L-functions. In

their seminal paper [BSV24], Ben–Zvi, Sakellaridis and Venkatesh proposed a general frame-

work for this relationship. Their central idea is that periods are associated with Hamiltonian

G-varieties, and each Hamiltonian variety should admit a “dual” M̌ , which is a Ǧ-Hamiltonian

variety. With this framework, the period PM associated to M is conjectured to an L-value

attached to M̌ .
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To formulate a precise conjecture, the authors of [BSV24] work in the context of function

fields with everywhere unramified data. A part of their conjecture [BSV24, Conjecture 14.2.1]

can be summarized as follows:

Conjecture 1.1.1 (Ben-Zvi-Sakellaridis-Venkatesh). Assume that M̌ = T ∗X̌, where X̌ is a

Ǧ-spherical variety. Let π be a tempered, everywhere unramified automorphic representation

of G(A) with L-parameter ϕ. If ϕ has only finitely many fixed points {x1, · · · , xr} on X̌. Then

for a suitably normalized spherical vector f ∈ π, we have

PM (f) ∼
∑
i

L(0, (TxiX̌)()

In the number field setting, Mao, Wan and Zhang [MWZ24] formulated an analog of the

Conjecture 1.1.1, under the assumption that the hypothetical extended L-parameter of π

only has at most one fixed point on M̌ . The goal of this paper is to prove specific cases

of Conjecture 1.1.1 in the style of [MWZ24] for number fields. We focus on the case where

X̌ = Ǧ/Ľ, with Ǧ a general linear group and Ľ a Levi subgroup. A key feature of this case is

that the set of fixed points is not necessarily a singleton, leading to an equality of the form

Automorphic period “ = ” Sum of L-values (1.1.1)

We note that the related work [Wan24] of Wan, who gavemain another example of (1.1.1),

that the period associated to U(2)\ SO(5) equals to a sum of two L-values.

1.2. The main result.

1.2.1. The period. Throughout the article, we fix a number field F . Let A := AF and fix a

non-trivial additive character ψ of F\A. We denote the general linear group GLk over F by

Gk.

For the introduction, we fix integers n > 0 and m > 0. Let G = G2n+m. Let N be the

upper triangular unipotent subgroup of G. Let Q be the standard parabolic subgroup of G

with Levi component G2n+1 × Gm−1
1 . Denote the unipotent radical of Q by U . We define a

character ψU of U(A) by

ψU (uij) = ψ(u2n+1,2n+2 + · · ·+ u2n+m−1,2n+m).

Let H denote the symplectic group Sp2n preserving the symplectic form

(
J

−J

)
with

J =
(

1
···

1

)
. We embed H into G as a subgroup in the upper-left corner. Note that H

normalizes U , and the character ψU is invariant under the conjugation action of H(A).

For an automorphic form f on G(A), we define its Fourier coefficient along U by

fU,ψ(g) :=

∫
[U ]
f(ug)ψ−1

U (u)du
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We then define the period integral

P(f) :=

∫
[H]

fU,ψ(h)dh. (1.2.1)

We remark that the integral defining P is not necessarily absolutely convergent. Thus, to

define this period for a broad class of automorphic forms, a regularization of the integral

(1.2.1) is required.

The period P is the period associated to the G-hyperspherical Hamiltonian variety M =

T ∗(G/HU,ψU ), whose conjectural dual variety is M̌ = T ∗X̌, where X̌ = G2n+m/Gn ×Gn+m
(see [BSV24, §4], [Sak13, Appendix A]).

1.2.2. The main result. We will study the period P(f) when f is a cuspidal Eisenstein series.

Let P be a standard parabolic subgroup of G, let π be a unitary cuspidal automorphic

representation of MP . For concreteness, we assume MP = Gn1×· · ·×Gnk
and π = π1⊠· · ·⊠πk,

where each πi is a unitary cuspidal automorphic representation of Gni .

Let A∞
MP

∼= Rk>0 denote the central subgroup of MP (A), consisting of elements of the form(
t1In1 ···

tkInk

)
with ti ∈ R>0.

We write π0 for the unique unramified twist of π such that the central character of π0 is

trivial on A∞
MP

. By an unramified twist, we mean π0 is of the form π1|·|λ1 ⊠ · · ·⊠ πk|·|λk with

λj ∈ iR for 1 ≤ j ≤ k.

Let φ ∈ Ind
G(A)
P (A) π, which we regard as a function on NP (A)MP (F )\G(A). Let E(φ) :=

E(·, φ, 0) be the associated Eisenstein series. We denote by Fix(π) the fixed point set of the

(hypothetical) L-parameter of Ind
G(A)
P (A) π acting on X̌.

Theorem 1.2.1 (Theorem 6.4.2, rough form). Assume that Fix(π0) is finite, then we have

Fix(π0) = Fix(π) and

(1) The period P(E(φ)) can be defined canonically.

(2) Let S be a sufficiently large set of places of F , then we have

P(E(φ)) =(∆S,∗
H )−1

∏
1≤i<j≤k

L(1, πi × π∨j )−1×

∑
σ∈Fix(π)

LS(1, TσX̌) · (local zeta integral of WMP
φ,S at S),

(1.2.2)

where

• ∆S,∗
H is a constant related to the Tamagawa measure (see §2.2.1)

• We define

WMP
φ (g) :=

∫
[MN

P ]
φ(ug)ψ−1(u)du
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to be the Whittaker coefficient of the section φ, where MN
P = MP ∩N . And we

decompose WMP
φ as WMP

φ = WMP ,S
φ WMP

φ,S with WMP ,S
φ is spherical and equals 1

at g = 1.

We will address the definition of P(E(φ)) in §1.3. For now, let us focus on the identity

(1.2.2).

Remark 1.2.2. • If πi = πj for some i ̸= j, the L-function L(s, πi × π∨j ) has a pole at

s = 1. In this case, the right-hand side of (1.2.2) is interpreted as 0, so P(E(φ)) = 0.

• Consider the function field analogue of Theorem 1.2.1 under the assumption that all

data are unramified. We may take S = ∅. Then if we normalize so that WMP
φ (1) = 1,

equation (1.2.2) becomes

P(E(φ)) = ∆∗,−1
H

∏
1≤i<j≤k

L(1, πi × π∨j )
∑

σ∈Fix(π)

L(1, TσX̌).

By a result of Shahidi [Sha81, §4], the Whittaker coefficientWE(φ)(g) :=
∫
[N ]E(φ)(u)ψ−1(u)du

of E(φ) satisfies WE(φ)(1) =
∏

1≤i<j≤k L(1, πi × π∨j )−1. Therefore, if we normalize so

that WE(φ)(1) = 1, then

P(E(φ)) = ∆∗,−1
H

∑
σ∈Fix(π)

L(1, TσX̌).

This is the form which exactly looks like Conjecture 1.1.1.

• The L function L(1, TσX̌) is an example of non-linear L-function; see [BSV24, Remark

14.2.4], [CV24].

• A version of Theorem 1.2.1 also holds for X̌ = GL2n /GLn×GLn (see §5). In this case,

the period associated to the dual variety M̌ (rather than M) is the Friedberg-Jacquet

period (or linear period) studied in [FJ93].

• In our earlier work [LWX25], we proved a special case of Theorem 1.2.1 when m = 1

and P is a maximal parabolic. We note that the method in the present article differs

from the that of loc .cit.. We also note that the period associated to M̌ is also studied

in [FJ93].

1.2.3. A more precise formulation. The statement of Theorem 1.2.1 involves the hypothetical

global Langlands correspondence. To avoid this, we now describe the fixed point set Fix(π)

and the L-function L(1, TσX̌) solely in terms of the representation π. In Appendix §A, we

verify that, assuming global Langlands correspondence, this description coincides with the

definition given by the L-parameter.

Let P be a standard parabolic and let π be a unitary cuspidal automorphic representation

of MP as above. The condition for Fix(π) to be discrete is equivalent to the following:

(1.2.3) For any subset I ⊂ {1, 2, · · · , k} such that
∑

i∈I ni = n, we have πi ̸= πj for any i ∈ I
and j ∈ Ic, where Ic denote the complement of I.
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From this description, we see that the condition that Fix(π0) is discrete is stronger than

the condition that Fix(π) is discrete. Therefore, Theorem 1.2.1 is slightly weaker than the

expectation from Conjecture 1.1.1.

Henceforth, we assume that (1.2.3) holds for π0. We define Fix(π) as the set of permutations

σ : {1, 2, · · · , k} → {1, 2, · · · , k}, for which there exists 1 ≤ t ≤ k with:

(1) nσ(1) + · · ·+ nσ(t) = n, nσ(t+1) + · · ·+ nσ(k) = n+m.

(2) σ(1) < · · · < σ(t) and σ(t+ 1) < · · · < σ(k).

Note that t is uniquely determined by σ and Fix(π) is in bijection with the set{
I ⊂ {1, 2, · · · , k} |

∑
i∈I

ni = n

}
.

In particular Fix(π) is non-empty if and only if, up to permutation, E(φ) is an Eisenstein

series “passing through” the maximal Levi subgroup Gn ×Gn+m. In other words, the period

P detects (n, n+m)-Eisenstein series.

For σ ∈ Fix(π) corresponds to the subset I above, we put

L(s, TσX̌) =
∏

(i,j)∈I×Ic
L(s, π∨i × πj)L(s, πi × π∨j ).

Note that the condition (1.2.3) ensures that this L-function does not have a pole at s = 1.

This completes the description of Fix(π) and L(1, TσX̌) in (1.2.2).

We now describe the local zeta integral. Let v be a place of F and let R = MRNR a

standard parabolic subgroup of G. Let Π be an irreducible generic representation of MR

and let W(Π, ψv) denote the Whittaker model of ΠR. We define Ind
G(Fv)
R(Fv)

W(Π, ψv) to be the

space of functions WMR : G(Fv)→ C such that for any g ∈ G(Fv), the map m ∈ MR(Fv) 7→
δ−1
R (m)WMR(mg) belongs to W(Π, ψv).

Let Qn denote the standard parabolic subgroup of G with Levi component Gn × Gn+m.

Let ΠM = Πn ⊠ Πn+m be an irreducible generic representation of MQn(Fv). For WM ∈
Ind

G(Fv)
Qn(Fv)

W(ΠM , ψv) and λ ∈ a∗Qn,C, we define

Zv(λ,W
M ) =

∫
NH(Fv)\H(Fv)

WM (h)e⟨λ,HQn (h)⟩dh,

where NH := N ∩ H. The integral is convergent for Re(λ) lies in a suitable cone and has

meromorphic continuation to a∗Qn,C.

Note that Fix(π) can be identified with a subset of the Weyl group WG of G. Specifically,

we identify an element σ ∈ Fix(π) with the permutation that preserves the internal order

of each block of MP . We write Pσ for the standard parabolic subgroup of G2n+m with

MPσ = Gnσ(1)
×· · ·×Gnσ(k)

. Let S be a finite set of places of F . Then σ induces a normalized

intertwining operator (see §2.4.3) Nπ,S : Ind
G(FS)
P (FS)

W(π, ψS)→ Ind
G(FS)
Pσ(FS)

W(σπ, ψS).
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Let Πσ,n = πσ(1) ⊞ · · · ⊞ πσ(t) (parabolic induction) and Πσ,n+m = πσ(t+1) ⊞ · · · ⊞ πσ(k).

Finally, let ΩQn
S denote the Jacquet integral (see §2.6.2), it is a map from Ind

G(FS)
Pσ(FS)

W(σπ, ψS)

to Ind
G(FS)
Qn(FS)

W(Πσ,n ⊠ Πσ,n+m, ψS).

With these notations, the precise form of the identity (1.2.2) is given by

P(E(φ)) =(∆S,∗
H )−1

∏
1≤i<j≤k

L(1, πi × π∨j )−1×

∑
σ∈Fix(π)

LS(1, TσX̌)

 ∏
1≤i<j≤k

LS(1, πσ(i) × π∨σ(j))

ZS(0,Ω
Qn
S (Nπ,S(σ)WMP

φ.S )).

(1.2.4)

1.3. Definition of the period. We now discuss the definition of the period integral.

1.3.1. Definition via continuous extension. Let S([G]) denote the space of Schwartz functions

on [G] and let T ([G]) denote the space of smooth functions of uniform moderate growth on

[G] (see 2.3.1). Both of them are vector spaces over C carrying a natural topology. When

f ∈ S([G]), the integral defining P(f) is absolutely convergent.

Let X(G) denote the set of cuspidal datum of G. (see §2.3.1) We have the following coarse

Langlands spectral decomposition according to cuspidal support:

L2([G]) =
⊕̂

χ∈X(G)
L2
χ([G]).

For a subset X ⊂ X(G), we put L2
X([G]) =

⊕̂
χ∈XL

2
χ([G]), and let SX([G]) = S([G]) ∩

L2
X([G]). These are Schwartz functions with cuspidal support in X. Let TX([G]) denote the

orthogonal complement of SXc([G]) in T ([G]). When TX([G]) carries the subspace topology

inherited from T ([G]), SX([G]) is a dense subspace of TX([G]).

Let X∆ denote the cuspidal datum represented by (MP , π) such that π satisfies (1.2.3).

We write S∆([G]) (resp. T∆([G])) for SX∆
([G]) (resp. TX∆

([G])). Then we have the following

theorem:

Theorem 1.3.1. The period P, defined on S∆([G]), admits a (necessarily unique) continuous

extension to T∆([G]).

Let P be a standard parabolic subgroup of G and let π be a unitary cuspidal automorphic

representation of MP such that π0 satisfies (1.2.3). Then the Eisenstein series E(φ) lies in

T∆([G]). This explains the meaning of (1) in Theorem 1.2.1.

1.3.2. Definition via truncation operator. When m = 1, there is an alternative definition of

the period with potential applications, for example, in relative trace formulas. The period

P is taking a Sp2n period of an automorphic form on GL2n+1. The work of Zydor [Zyd19]

suggests a regularization of the period P via truncation. Let f ∈ T ([G]) and let T be a
7



truncation parameter, in loc. cit., Zydor defines a truncated function ΛT f on [H] which is

rapidly decreasing. In §7, we prove the following result:

Proposition 1.3.2. For f ∈ T∆([G]), the integral∫
[H]

ΛT f(h)dh

is independent of T . Moreover, this constant coincides with P(f) as defined in Theorem 1.3.1.

1.4. The strategy of the proof. The proof of Theorem 1.2.1 and Theorem 1.3.1 proceed via

an unfolding argument, analogous to the standard unfolding of period integrals into integrals

of Whittaker functions.

Let ψn be the degenerate character on N(A) defined by

ψn(u) = ψ(u1,2 + · · ·+ un−1,n + un+1,n+2 + · · ·+ u2n+m−1,2n+m).

For f ∈ T ([G]), we define the associated degenerate Whittaker coefficient by:

Vf (g) =

∫
[N ]

f(ug)ψ−1
n (u)du.

The key step is the following proposition:

Proposition 1.4.1 (Proposition 6.2.1). For f ∈ S∆([G]), then we have

P(f) =

∫
NH(A)\H(A)

Vf (h)dh.

The proof of this proposition involves performing a Fourier expansion along certain abelian

unipotent subgroups, similar to the Fourier expansion of a cusp form. However, since f is

not necessarily cuspidal, extra terms appear in the unfolding process. Our assumption on the

cuspidal support of f ensures that these extra terms do not contribute to the period.

For f ∈ T ([G]) and λ ∈ a∗Qn,C, we define a global zeta integral by

Z(λ, f) =

∫
NH(A)\H(A)

Vf (h)e⟨λ,HQn (h)⟩dh.

The global zeta integral Z(λ, f) is absolutely convergent when Re(λ) lies in suitable half-

plane. We then show that for f ∈ T∆([G]), the zeta integral Z(λ, f) is holomorphic at λ = 0,

and the map f 7→ Z(0, f) provides the continuous extension of P to T∆([G]).

Let QHn := Qn ∩ H be the Siegel parabolic of H. Let KH denote a maximal compact of

H(A) which is in good position relative to the upper triangular Borel at the non-Archimedean

places. Using the Iwasawa decomposition H(A) = QHn (A)KH , the zeta integral Z(λ, f) can

be expressed as

Z(λ, f) =

∫
KH

Z̃RS(sλ + n+ 1, R(k)fQn)dk, (1.4.1)

where
8



(1) Z̃RS denotes the (twisted) Rankin-Selberg zeta integral: for f ∈ T ([Gn ×Gn+m]), we

define

Z̃RS(s, f) =

∫
Nn(A)\Gn(A)

Wf (J tg−1J,

(
g

1m

)
)|det g|sdg,

where Nn denotes the upper triangular unipotent subgroup of Gn and

Wf (g) =

∫
[Nn×Nn+m]

f(ug)ψ−1(u)du

is the Whittaker coefficient of f .

(2) α ∈ ∆Qn is the unique simple root and α∨ denotes its coroot and sλ = −⟨λ, α∨⟩.

By (1.4.1), the problem reduces to show that the Rankin-Selberg integral admits a contin-

uous extension to uniform moderate growth functions with specific cuspidal support. When

m = 1, this is achieved in [BCZ22, §7]. We will show the case when m > 1 in §4. The proof

involves another unfolding process and an application of the Phragmen-Lindelöf principle.

Finally, when f = E(φ) is a cuspidal Eisenstein series, we use the formula (1.2.4) to compute

P(E(φ)) = Z(0, f). By combining the constant term formula for Eisenstein series and the

Euler decomposition of Rankin-Selberg integral, we will achieve (1.2.2). The summation of L-

values appearing in the formula results from the formula for the constant terms of Eisenstein

series.

1.5. The structure of this article. After the preliminaries in §2, we will review the result of

canonical extension of Rankin-Selberg period of corank 1 [BCZ22, §7] and equal rank [BCZ22,

§10.3] to functions with certain cuspidal support in §3. And we will do the higher corank case

in §4. Then we will study the period detecting (n, n)-Eisenstein series in §5 and detecting

(n, n+m)-Eisenstein series in §6.

1.6. Acknowledgement. We thank Chen Wan for introducing this problem. We thank

Raphaël Beuzart-Plessis, Paul Boisseau, Colin Loh, Omer Offen, Dihua Jiang, Zeyu Wang,

Hang Xue, Lei Zhang and Wei Zhang for helpful suggestions and discussions.

2. Preliminaries

2.1. General notations.

• Throughout this article, unless otherwise specified, we fix a number field F . Let

A := AF be the adèle ring of F and let Af be the finite adèles. Let v be a place

of F , we write Fv for the completion. Let S be a finite set of places of F , we write

FS :=
∏
v∈S Fv.

• We writeGn for the general linear group GLn over F . Let S∞ be the set of Archimedean

places, we write F∞ := FS∞ .
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• Let Sp2n be the symplectic group preserving the symplectic form

(
J

−J

)
with

J =
(

1
···

1

)
.

• For integer m > 1, let 1m denote the identity matrix of size m.

• Let H>C = {z ∈ C | Re(z) > C}.
• For a ring R, we write Rn the column vector with coefficient in R of size n and we

write Rn for the row vector of size n.

• Let f, g be two positive functions on a set X, we write f ≪ g if there exists C > 0

such that f(x) ≤ Cg(x) for any x ∈ X.

• For a set X and a subset A ⊂ X, we write Ac the complement of A in X.

2.2. Groups. Let G be a connected linear algebraic group over a global field F . Let [G] :=

G(F )\G(A) the adèlic quotient of G.

2.2.1. Tamagawa measure. We fix the Tamagawa measure dg on G(A), and thus on [G] as

described in [BCZ22, section 2.3]. We recall the definition here. Fix a non-trivial additive

character ψ : F\AF → C×. We decompose ψ as ψ =
∏
ψv. For each place v of F , ψv

determines the self-dual measure on Fv. Let ω be an F -rational G-invariant top differential

form on G. For each place v, |ω|v gives a measure dgv on G(Fv). Moreover, according to the

results of Gross [Gro97], there exists a global Artin-Tate L-function LG(s) such that

dgv(G(Ov)) = LG,v(0)

for almost all places v. We denote by

∆G,v := LG,v(0)

and let ∆∗
G denote the leading coefficient of the Laurent expansion of LG(s) at s = 0. The

Tamagawa measure is defined by

dg = (∆∗
G)−1

∏
v

dgv.

The measure is independent of the choice of ω. For a finite set S of places of F , let ∆S,∗
G

denote the leading coefficient of the partial L-function LS
G(s) at s = 0.

2.2.2. Norms and heights. Let N be a positive integer. For x ∈ AN , we define

∥x∥ =
∏
v

max{|x1,v|v, · · · , |xn,v|v, 1},

where the product runs over the set of places of F . For a linear algebraic group G, we fix a

closed embedding ι of G into an affine space. Then for g ∈ G(A) we define ∥g∥G(A) = ∥ι(g)∥.
Let ∥ · ∥′G(A) be the norm defined by another embedding ι′, then there exists r > 0 such that

∥g∥G(A) ≪ ∥g∥
′,r
G(A). We refer the reader to [Beu21, Appendix A] for more properties of the

norm ∥ · ∥G(A).
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For the rest of §2.2, we assume that G is a connected reductive group. We fix a maximal

split torus A0 of G and fix a minimal parabolic subgroup P0 of G containing A0. A parabolic

subgroup of G is called standard if it contains P0 and is called semi-standard if it contains

A0.

Let P be a semi-standard parabolic subgroup, we denote by MP the Levi subgroup of

P containing A0 and denote by NP the unipotent radical of P . Since the natural map

MP ×NP → P is an isomorphism of varieties. We see that ∥mn∥P (A) ∼ ∥m∥MP (A)∥n∥NP (A).

That is, there exists c > 1 such that

∥mn∥1/cP (A) ≪ ∥m∥M(A)∥n∥N(A) ≪ ∥mn∥cP (A)

holds for all m,n ∈MP (A)×N(A). As a consequence

(2.2.1) There exists C > 0 and r > 0 such that for any g ∈ G(A) and (m,n, k) ∈MP (A)NP (A)K

such that g = nmk, we have ∥m∥M(A) ≤ C∥g∥rG(A)

For a semi-standard parabolic subgroup P of G, we put

[G]P := NP (A)MP (F )\G(A).

We define a norm on [G]P by

∥g∥P := inf
γ∈NP (A)MP (F )

∥γg∥.

2.2.3. Weyl groups. Let W be the Weyl group of (G,A0), that is, the quotient by M0(F ) of

the normalizer of A0 in G(F ). For a standard parabolic subgroup P , we write WP := WMP ,

and we regarded it as a subgroup of W . For standard parabolic subgroups P,Q, we denote

by

QWP := {w ∈W |MP ∩ w−1P0w = MP ∩ P0, MQ ∩ wP0w
−1 = MQ ∩ P0}.

The set QWP forms a representative of the double coset WQ\W/WP . For w ∈ QWP , MP ∩
w−1MQw is the Levi factor of the standard parabolic subgroup Pw = (MP ∩ w−1Qw)NP .

In the same way, MQ ∩ wMPw
−1 is the Levi factor of the standard parabolic subgroup

Qw = (L ∩ wPw−1)NQ. We have Pw ⊂ P , Qw ⊂ Q We also define

W (P ;Q) = {w ∈ QWP |MP ⊂ w−1MQw}.

and

W (P,Q) = {w ∈ QWP |MP = w−1MQw}.

P and Q are called associate if W (P,Q) ̸= ∅. For example, for any P,Q and w ∈ QWP ,

the parabolics Pw and Qw are associate.
11



2.2.4. For a semi-standard parabolic subgroup P of G, define

a∗P := X∗(P )⊗Z R, aP := HomZ(X∗(P ),R).

We endow aP with the Haar measure such that the lattice Hom(X∗(P ),Z) has covolume 1.

Let a0 := aP0 and a∗0 := a∗P0
.

ϵP := (−1)dim aP−dim aG .

Let AP denote the maximal central split torus of MP . Then aP can also be identified with

X∗(AP )⊗Z R. When P ⊂ Q are two semi-standard parabolic subgroups, then natural maps

P ↪→ Q and AQ ↪→ AP induce a projection a∗P → a∗Q and an injectiion a∗Q → a∗P .

Let P ′
0 be a minimal semi-standard parabolic subgroup, let ∆P ′

0
⊂ aP ′

0
be the set of simple

roots of the AP0 action on Lie(NP ′
0
). Let P be a semi-standard parabolic subgroup, choose

a minimal parabolic subgroup P ′
0 ⊂ P , then we denote by ∆P the image of ∆P ′

0
under the

projection aP ′
0
→ aP . ∆P can also be identified with the set of simple roots of AP action on

Lie(NP ), in particular, ∆P is independent of the choice of P ′
0.

2.2.5. Iwasawa decomposition. Let K be a maximal compact subgroup of G(A) which is in

good position with respect to P0. Then for any semi-standard parabolic subgroup P of G, we

have the Iwasawa decomposition G(A) = P (A)K.

When G = Gn, we denote by Kn the usual maximal compact subgroup of Gn(A). In the

main text, we will sometimes use H to denote the symplectic group Sp2n, and KH will denote

the usual maximal compact subgroup of Sp2n(A) accordingly.

Lemma 2.2.1. There exists measurable maps G(A)→ P (A)×K, g 7→ (p(x), k(x)) such that

for any g ∈ G(A), we have g = p(g)k(g).

Proof. Since P (A) ×K is a Polish space, this follows from Kuratowski and Ryll-Nardzewski

measurable selection theorem applied to the natural map P (A)×K → G(A). □

We will sometimes refer to any function p(g), k(g) as in the previous lemma a measurable

(family of) Iwasawa decomposition.

For positive integers k, n, denote by Matk×n(A) the set of matrices of size k × n with

coefficients in A. For future use, we record the following estimate

Lemma 2.2.2. Let n, k be positive integers. Fix m such that k ≤ m ≤ n + k , let Q

be the parabolic subgroup of Gn+k with Levi factor Gn+k−m × (G1)
m. For any x =

x1· · ·
xk

 ∈
Matk×n(A), xi ∈ An, assume that under the Iwasawa decomposition Gn+k(A) = NQ(A)MQ(A)Kn+k,

we write (
1n

x 1k

)
= u(x)

(
g(x)

t(x)

)
k(x), (2.2.2)

12



where g(x) ∈ GLn+k−m(A) and t(x) = diag(t1(x), · · · , tm(x)). Then there exists M > 0 such

that

(2.2.3) For 1 ≤ i ≤ k, we have |tm+k−i(x) · · · tm(x)| ≫ ∥xi∥An,

(2.2.4) ∥g(x)∥GLn(A) ≪ ∥x∥MMatk×n(A), ∥ti(x)∥GL1(A) ≪ ∥x∥MMatk×n(A) .

holds for any x ∈ Matk×n(An) and 1 ≤ i ≤ k.

Remark 2.2.3. Since different choices of Iwasawa decomposition will yield right translation

of g(x) or t(x) by elements of Km+k, hence (2.2.3) is independent of the choice of Iwasawa

decomposition and (2.2.4) holds for any choice of Iwasawa decomposition (after possibly en-

larging constant).

Proof. (2.2.4) follows from (2.2.1). Now we prove (2.2.3). Let e1, · · · , en+k be the canonical

basis for Fn+k. The basis ei yield a canonical basis {eI :=
∧
i∈I ei}I⊂{1,··· ,k},|I|=i for the

exterior power
∧i Fn+k. For ω ∈

∧iAn+k, write ω =
∑

I aIeI , we define

|ω| =
∏
v

max
I
{|aI |v}.

For any g ∈ Gn+m(A) and ω ∈
∧iAn+k, we denote by ω · g the natural action of g on ω. The

absolute value |·| satisfies

|ω| ≪ |ω · k| ≪ |ω|, ∀ω ∈
i∧
An+k, k ∈ Kn+k. (2.2.5)

Let 1 ≤ i ≤ k. Consider ωi := en+i ∧ · · · ∧ en+k ∈
∧n−iAn+k. Since ωk−i+1 · u = ωi for any

u ∈ NQ(A). We can check that∣∣∣∣∣ωi ·
(

1n

x 1k

)∣∣∣∣∣≫∏
v

max{|xi,1|v, · · · , |xi,n|v, 1} = ∥xi∥An . (2.2.6)

By (2.2.5), applying right hand side of (2.2.2) to ω yields∣∣∣∣∣ωi ·
(

1n

x 1k

)∣∣∣∣∣≪ |tm+k−i(x) · · · tm(x)|. (2.2.7)

Combining (2.2.6) and (2.2.7) yields (2.2.3). □

2.2.6. The map HP . We denote by A∞
G the neutral component of real points of the maximal

split central torus of ResF/QG. For a semi-standard parabolic subgroup P of G, let A∞
P :=

A∞
MP

. We also define A∞
0 := A∞

P0
= A∞

M0
.

The map

HP : P (A)→ aP , p 7→ (χ 7→ log|χ(g)|) , χ ∈ X∗(P ),

extends to G(A), by requiring it trivial on K. The map HP induces an isomorphism A∞
P
∼= aP ,

we endow A∞
P with the Haar measure such that this isomorphism is measure-preserving.
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2.2.7. An estimate.

Lemma 2.2.4. For every k ≥ n, if N is sufficiently large, we have∑
v∈Fn\{0}

∥av∥−NAn
≪ |a|−k, a ∈ A×.

Proof. We write a as a1t, where t ∈ R>0 and |a1| = 1. Then∑
v∈Fn\{0}

∥av∥−NAn
≪

∑
v∈Fn\{0}

∥tv∥−NAn
∥a1∥NA×

Since the LHS is invariant under F×, we have∑
v∈Fn\{0}

∥av∥−NAn
≪

∑
v∈Fn\{0}

∥tv∥−NAn
∥a1∥NGm

Since [Gm]1 is compact, ∥a1∥NGm
is bounded. Therefore we are reduced to the case when

a ∈ R>0, in which case, it is proved in [BCZ22, (2.6.2.6)]. □

Corollary 2.2.5. For any c > 1, there exists N0 such that for any N ≥ N0, the integral∫
A×
∥x∥−NA |x|sdx

is absolutely convergent for 1 < Re(s) < c.

Proof. We write [GL1]
≤1 (resp. [GL1]

≥1) for the elements x ∈ [GL1] such that |x| ≤ 1 (resp.

≥ 1). We write the integral as ∫
[GL1]

∑
v ̸=0

∥vx∥−NA |x|sdx.

By Lemma 2.2.4, when N is sufficiently large, it is essentially bounded by∫
[GL1]≤1

|x|s−1dx+

∫
[GL1]≥1

|x|s−cdx.

This is finite when 1 < Re(s) < c. □

2.3. Spaces of functions.

2.3.1. There are various function spaces on [G]P which we briefly recall below. The reader

may consult [BCZ22, §2.5] for more details.

A function f : G(A)→ C is called smooth, if it is right J-invariant for some open compact

subgroup J ⊂ G(Af ) and for any gf ∈ G(Af ), the function g∞ 7→ f(gfg∞) is C∞. A function

on [G]P is called smooth if it pulls back to a smooth function on G(A).
14



Let S([G]P ) be the space of Schwartz functions on [G]P . It is the union of S([G]P , J) for

open compact subgroup J ⊂ G(Af ). Where S([G]P , J) is the space of smooth functions on

[G]P which are right J invariant and

∥f∥X,N := sup
x∈[G]P

|R(X)f(x)|∥x∥NP <∞

for any X ∈ U(g∞) and N > 0. The vector space S([G]P , J) is naturally a Fréchet space and

S([G]P ) is naturally a strict LF space.

For N > 0, let SN ([G]P ) be the set of smooth functions f on [G]P such that ∥f∥X,N <∞
for all X ∈ U(g∞). It is also a natural LF space.

Let S0([G]P ) be the space of measurable function f on [G]P such that

∥f∥∞,N := sup
x∈[G]P

|f(x)|∥x∥NP <∞ (2.3.1)

for any N > 0. It is naturally a Fréchet space.

Let T ([G]P ) be the function of uniform moderate growth on [G]P . It is the union of

TN ([G]P , J), where N > 0 and J ⊂ G(Af ) is open compact subgroup. TN ([G]P , J) consists

of smooth functions f on [G]P which are right J-invariant and

∥f∥X,−N := sup
x∈[G]P

|R(X)f(x)|∥x∥−NP <∞

for any X ∈ U(g∞). The vector space TN ([G]P , J) is naturally a Fréchet space and T ([G]P )

then carries the induced (non-strict) LF topology.

For a Hilbert representation V of G(A), we write V∞ for the set of smooth vectors, i.e.

the set v ∈ V that is fixed by a compact open subgroup of G(Af ) and is a smooth vector as

G(F∞) representation. For each compact open subgroup J ⊂ G(Af ), the vector space V∞,J

carries the usual Fréchet topology (for smooth vectors in a Lie group representation). We

endow V∞ =
⋃
J V

∞,J the LF topology.

For an integer N , we write L2
N ([G]P ) for the weighted L2 space consisting of measurable

functions f on [G]P such that ∫
[G]P

|f(x)|2∥x∥NP dx <∞.

Let L2
N ([G]P )∞ be the set of smooth vectors. By Sobolev lemma [Ber88, §3.4, Key Lemma],

we have

(2.3.2) For each N > 0 there exists N ′ > 0 such that we have closed embedding of topological

vector spaces

L2
N ([G]P )∞ ↪→ SN ′([G]P ), SN ([G]P ) ↪→ L2

N ′([G]P )∞.
15



2.3.2. Constant terms. For P ⊂ Q, we have the following constant term map

T ([G]Q) ∋ f 7→ fP :=

(
g 7→

∫
[NP ]

f(ng)dn

)
∈ T ([G]P ).

We recall the following useful estimate of constant term of a Schwartz function [BCZ22,

Lemma 2.5.13.1]

Lemma 2.3.1. Let P be a parabolic subgroup of G. Then there is a constant c > 0 such that

for every N ≥ 0,

f 7→ sup
x∈[G]P

δP (x)cN∥x∥NP |fP (x)|

is a continuous semi-norm on S([G]).

As a direct consequence, we obtain

(2.3.3) Let P be a standard parabolic subgroup of G and κ ∈ C∞
c (aP ) be a compactly

supported smooth function on aP . Then for every f ∈ S([G]), we have

(κ ◦HP ) · fP ∈ S([G]P ).

Also, combining Lemma 2.3.1 with (2.3.2), we obtain:

(2.3.4) For N > 0. There exists cN > 0 such that for any s ∈ C with Re(s) > cN , we have

[MP ] ∋ m 7→ fP (m)δP (m)s ∈ L2
N ([MP ])∞.

The following two variable versions of the constant term estimates follows from the same

proof of [BCZ22, Lemma 2.5.13.1]

Lemma 2.3.2. Let G,H be connected reductive groups over F . Let P × Q be a parabolic

subgroup of G×H. Then there exists c > 0 such that for any M,N ≥ 0,

f 7→ sup
(x,y)∈[G×H]P×Q

δP (x)cNδQ(y)cM∥x∥NP ∥y∥MQ |fP×Q(x, y)|

is a continuous semi-norm on S([G×H]).

2.3.3. Polarized Θ-series. Let Φ ∈ S(An). We associate the following Θ-series :

Θ(g,Φ) =
∑
v∈Fn

Φ(vg)|g|
1
2 , g ∈ [GLn] (2.3.5)

The factor |g|
1
2 appears because the action of GLn(A) on S(An) given by (g · Φ)(v) =

Φ(vg)|g|
1
2 is unitary.

The convergence and the growth of the Θ-series are justified by the following lemma
16



Lemma 2.3.3. There exists M > 0 and N0 > 0, such that for every N ≥ N0, we have∑
v∈Fn

∥vh∥−NAn
≪ ∥h∥MGn

. (2.3.6)

In particular, there exists N0 > 0 such that for any Φ ∈ S(An), we have Θ(·,Φ) ∈ TM ([Gn]).

Proof. Note that the left-hand side of (2.3.6) is decreasing in N , so it suffices to find N = N0

such that (2.3.6) holds. There exists c > 0 such that

∥vh∥−NAn
≪ ∥v∥−cNAn

∥h∥cNGn(A)

holds for any v ∈ An and h ∈ Gn(A). It then suffices to pickN0 > 0 such that
∑

v∈Fn
∥v∥−cN0

An
<

∞. □

Corollary 2.3.4. For any C > 0, there exists N0 > 0, such that for any N,N ′ > N0, the

integral ∫
Pn(F )\Gn(A)

∥enh∥−NAn
|deth|s∥h∥−N ′

Gn
dh

converges for |Re(s)| < C.

Proof. The integral can be written as∫
[Gn]

∑
v ̸=0

∥vh∥−NAn
|deth|s∥h∥−N ′

Gn
dh.

By Lemma 2.3.3 and the fact that

max{|deth|, |deth|−1} ≪ ∥h∥rGn

for some r > 0, we see that the integral is bounded by∫
[Gn]
∥h∥−N

′+M+Re(s)r
Gn

dh,

for some M > 0, the result follows. □

We also remark that, by the Poisson summation formula, Θ-series satisfies

Θ(g,Φ) = Θ(tg−1, Φ̂). (2.3.7)

2.3.4. Estimates on Fourier coefficients. Let P ⊂ G be a standard parabolic subgroup, ψ :

A/F → C× be a non-trivial character and VP be the vector space of additive algebraic

characters NP → Ga. Let l ∈ VP (F ) and set ψl := ψ ◦ lA : [NP ] → C× where lA denotes the

homomorphism between adelic points NP (A)→ A. For φ ∈ T ([G]), we set

φNP ,ψl
(g) =

∫
[NP ]

φ(ug)ψl(u)−1du, g ∈ G(A).

The adjoint action of MP on NP induces one on VP that we denote by Ad∗.

Lemma 2.3.5. [BCZ22, Lemma 2.6.1.1]
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(1) There exists c > 0 such that for every N1, N2 ≥ 0,

φ 7→ sup
m∈MP (A)

sup
k∈K
∥Ad∗(m−1)l∥N1

VP (A)∥m∥
N2
MP

δP (m)cN2 |φNP ,ψl
(mk)|

is a continuous semi-norm on S([G]).

(2) Let N > 0. Then, for every N1 ≥ 0,

φ 7→ sup
m∈MP (A)

sup
k∈K
∥Ad∗(m−1)l∥N1

VP (A)∥m∥
−N
MP
|φNP ,ψl

(mk)|

is a continuous semi-norm on TN ([G]).

Proof. Without the term supk∈K , this is exactly [BCZ22, Lemma 2.6.1.1]. Since for any

continuous semi-norm ∥ · ∥ on S([G]) or TN (G), f 7→ supk∈K ∥R(k)f∥ is still a continuous

semi-norm. The result follows. □

2.4. Automorphic forms and Eisenstein series.

2.4.1. Automorphic forms. Let G be a connected reductive group over F and let P be a

standard parabolic subgroup. An automorphic form on [G]P is, by definition, is a Z(g∞)-

finite function in T ([G]P ). We denote by AP (G) the set of automorphic form on [G]P .

Let AP,cusp(G) denote the subspace of AP (G) consisting of cuspidal automorphic forms,

that is, consisting of φ ∈ AP (G) such that φQ = 0 for any standard parabolic subgroups

Q ⊂ P .

Let J be a finite codimensional ideal of Z(g∞). Let AP,J (G) denote the subspace of

automorphic form φ ∈ AP (G) such that R(z)φ = 0 for all z ∈ J . Then there exists N > 0

such that AP,J(G) is a closed subspace of TN ([G]). We endow AP,J with the topology induced

from TN (G). This topology is independent of the choice of N . We then endow AP (G) with the

inductive limit topologyAP (G) =
⋃

J AP,J (G). For each J , the inclusionAP,J (G) ↪→ AP (G)

is a closed embedding. We refer the reader to [BCZ22, §2.7.1] for the proof of these facts.

A cuspidal automorphic representation of G is defined to be a topologically irreducible

subrepresentation π of G(A) on Acusp(G). Note that a cuspidal automorphic representation

π is unitary if and only if any φ ∈ π has a unitary central character, in the sense that for any

z ∈ G(A), φ(zg) = φ(g)ω(z) for some unitary character ω : ZG(A) → C×, where ZG denote

the center of G.

2.4.2. Eisenstein series. Let P = MPNP be a standard parabolic subgroup of G. Let π be

a cuspidal automorphic representation of MP . Let Aπ,cusp(MP ) denote the the sum of all

cuspidal automorphic representations of MP (A) that are isomorphic to π.

We write Ind
G(A)
P (A) π (resp. AP,π) for the subspace

{φ ∈ AP (G) | for any g ∈ G(A),m 7→ δ
− 1

2
P (m)φ(mg) ∈ π (resp. Aπ,cusp(MP ))}.

of AP (G).
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For φ ∈ AP,π and λ ∈ a∗P,C, we define the Eisenstein series as

E(g, φ, λ) =
∑

γ∈P (F )\G(F )

e⟨λ,HP (γg)⟩φ(γg).

The series is absolutely convergent when Re(λ) lies in some cones and by [BL24], [Lap08], it

has meromorphic continuation to a∗P,C. When π is unitary, for φ ∈ AP,π, the Eisenstein series

E(g, φ, λ) is regular when λ ∈ ia∗P .

2.4.3. Intertwining operators and normalizations. Let P and Q be standard parabolic sub-

groups of G. For any w ∈W (P,Q) and λ ∈ a∗P,C, the intertwining operator

M(w, λ) : AP (G)→ AQ(G)

is defined by the meromorphic continuation of the integral

(M(w, λ)φ)(g) = exp(−⟨wλ,HP (g)⟩)

×
∫
(NQ∩wNPw−1)(A)\NQ(A)

exp(⟨λ,HP (w−1ng)⟩)φ(w−1ng)dn.

(see [BL24] for the meromorphic continuation). Let π be a cuspidal representation of MP ,

we denote by Mπ(w, λ) the restriction of M(w, λ) to the subspace AP,π(G) ⊂ AP (G). It is

known that if π is unitary, then Mπ(w, λ) is regular on ia∗P .

Now we assume G is Gn and write MP = Gn1 × · · · × Gnk
and π = π1 ⊠ · · · ⊠ πk. Let

Σ+
P ⊂ X∗(AP ) denote the set of positive roots of AP action on nP . Let β ∈ Σ+

P be the positive

root of P associated to the two blocks Gni and Gnj with 1 ≤ i < j ≤ k. Set

nπ(β, s) =
L(s, πi × π∨j )

ϵ(s, πi × π∨j )L(1 + s, πi × π∨j )
=
L(1− s, π∨i × πj)
L(1 + s, πi × π∨j )

,

then we define

nπ(w, λ),=
∏
β∈ΣP
wβ<0

nπ(β, ⟨λ, β∨⟩).

Following [MW89], we normalize M(w, λ) as

Mπ(w, λ) = nπ(w, λ)Nπ(w, λ). (2.4.1)

Let φ ∈ Ind
G(A)
P (A) π. Assume that φ = ⊗′

vφv is factorizable, where φv ∈ Ind
G(Fv)
P (Fv)

πv. Let S be

a sufficiently large finite set of places of F , which we assume to contain Archimedean places

as well as the places φv is ramified. We have a factorization

Nπ(w, λ)φ =
∏
v∈S

Nπv(w, λ)φv. (2.4.2)

Here Nπv(w, λ) is the meromorphic local normalized intertwining operator Ind
G(Fv)
P (Fv)

πv,λ →

Ind
G(Fv)
Q(Fv)

(wπ)v,λ, (see [MW89]). The product notation of (2.4.2) means Nπ(w, λ)φ is fac-

torizable and for v /∈ S the local component Nπv(w, λ)φv is the unique unramified vector in
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Ind
G(Fv)
Q(Fv)

(wπ)v such that Nπv(w, λ)φv(1) corresponds to φv(1) under the natural identification

between πv and (wπ)v.

The following result is taken from [MW89, Page 607]

Lemma 2.4.1. Let πv be a smooth irreducible and unitary representation of MP (Fv). Then

the operator Nπv(w, λ) is holomorphic and unitary if λ ∈ ia∗P . It is an isomorphism.

From now on, we simply write Nπ(w) for Nπ(w, 0). If we put

L(s, π, n̂−P ) :=
∏

1≤i<j≤k
L(s, πi × π∨j ), (2.4.3)

then we have

nπ(w, 0) =
L(1, wπ, n̂−Q)

L(1, π, n̂−P )
.

For sufficiently large S as above, we denote by

Nπ,S(w) =
∏
v∈S

Nπv(w) : Ind
G(FS)
P (FS)

πS → Ind
G(FS)
Q(FS)

(wπ)S.

We finally remark that the normalized intertwining operator naturally extends to the case

when G is a product of Gni .

2.5. Langlands spectral decomposition.

2.5.1. Cuspidal datum. Let G be a connected reductive group over F . Let X(G) denote the

set of pairs (MP , π), where MP is the Levi component of a standard parabolic subgroup P and

π is a cuspidal automorphic representation of MP (A) with central character trivial on A∞
P .

Two elements (MP , π) and (MQ, π
′) of X(G) are called equivalent, if there exists g ∈ G(F )

such that gMP g
−1 = MQ and gπ = π′. Let X(G) denote the equivalence class of X(G), an

element of X(G) will be called a cuspidal data.

For a standard parabolic subgroup P ⊂ G, there exists a natural map X(MP ) → X(G),

and it induces a map X(MP ) → X(G) which has finite fiber. For each subset X ⊂ X(G), we

will write XM for its preimage in X(MP ).

2.5.2. Langlands decomposition. For χ ∈ X(G), and P be a standard parabolic subgroup,

we write OP
χ ⊂ S([G]P ) the set of pseudo-Eisenstein series with respect to χ (See [MW95,

§II.1], [BCZ22, §2.9]). Let L2
χ([G]P ) denote the closure of OP

χ in L2([G]P ), then we have the

following coarse Langlands decomposition:

L2([G]P ) =
⊕

χ∈X(G)

L2
χ([G]P ). (2.5.1)

For a subset X ⊂ X(G), we write L2
X([G]P ) :=

⊕̂
χ∈XL

2
χ([G]P ). Then we define

SX([G]P ) := L2
X([G]P ) ∩ S([G]P ). (2.5.2)
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Note that SX([G]P ) is a closed subspace of S([G]P ), since it is orthogonal complement of⋃
χ ̸∈XOχ in S([G]P ).

We then define TX([G]P ) (resp. L2
N ([G]P )∞) be the orthogonal complement of SXc([G]P )

in T ([G]P ) (resp. L2
N ([G]P )∞).

We call element of SX([G]P ) the set of Schwartz function with cuspidal support in X and

TX([G]P ) the set of uniform moderate growth function with cuspidal support in X. For any

subset X ⊂ X(G), the space SX([G]P ) is dense in TX([G]P ) (see [BCZ22, §2.9.5])

The following theorem [BCZ22, Theorem 2.9.4.1] describes the decomposition of a function

according to cuspidal support:

Theorem 2.5.1 (Beuzart-Plessis-Chaudouard-Zydor). We have the following statements:

(1) For f ∈ S([G]P ), let fχ denote the χ-part of f under the decomposition (2.5.1), then

fχ ∈ S([G]P ) and f =
∑

χ fχ, where the sum is absolutely summable in S([G]P ).

(2) The map f 7→ fχ : S([G]P ) → T ([G]P ) extends by continuity to a map T ([G]P ) →
T ([G]P ), which we still denote by f 7→ fχ. Then for any f ∈ T ([G]P ), fχ ∈ Tχ([G]P )

and the sum f =
∑

χ fχ is absolutely summable in T ([G]P ).

2.5.3. Some lemmas.

Lemma 2.5.2. For each χ ∈ X(G), OP
χ is dense in Sχ([G]P ) and Tχ([G]P ).

Proof. See [Boi25, Lemma 5.5.1.2] for the density in Sχ([G]P ), the density in Tχ([G]P ) also

follows, since Sχ([G]P ) is dense in Tχ([G]P ). □

Lemma 2.5.3. Let χ ∈ X(G) be a cuspidal datum and P be a standard parabolic subgroup of

G. Then we have

EGP (Sχ([G]P )) ⊂ Sχ([G]), Tχ([G])P ⊂ Tχ([G]P ).

Proof. See [BCZ22, Lemma 2.9.3.1]. □

Lemma 2.5.4. Let χ ∈ X(G) be a cuspidal datum, P be a standard parabolic subgroup of G

and χM be the inverse image of χ in X(MP ). Then, for every f ∈ Sχ([G]P )(resp. Tχ([G]P )),

its restriction f |[MP ] to [MP ] belongs to SχM ([MP ])(resp. TχM ([MP ])).

Proof. If f ∈ OP
χ , this follows from the definition, and the general cases follow by the density

(Lemma 2.5.2). □

Lemma 2.5.5. Assume that G = H×L, where H and L are connected reductive groups over

F . Then we have a natural identification X(G) = X(H) × X(L). For a subset X ⊂ X(G),

denote its projection to X(H) by XH . Then for every SX([G]), its restriction to [H] belongs

to SXH
([H]).

The proof is the same as the proof of Lemma 2.5.4.
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Lemma 2.5.6. Let χ ∈ X(G) be a cuspidal datum, P be a standard parabolic subgroup of G,

and κ ∈ C∞
c (aP ) be a compactly supported smooth function on aP . Then Tχ([G]P ) is stable

under the multiplication by κ ◦HP .

Proof. This can also be proved via the method in the proof of Lemma 2.5.4. Alternatively,

for f ∈ Tχ([G]P ), we need to show that f · (κ ◦HP ) is orthogonal to any f ′ ∈ Sχ′([G]P ) for

χ′ ̸= χ. Then

⟨(κ ◦HP )f, f ′⟩[G]P = ⟨(f, (κ ◦HP )f ′⟩[G]P .

Therefore, it reduces to proving Sχ is stable under multiplication by κ ◦ HP . Since Sχ is

orthogonal to Oχ′ to all χ′ ̸= χ. By the same trick, it reduces to proving each Oχ is stable

under multiplication by (κ ◦HP ), which follows from the definition. □

2.6. Whittaker model.

2.6.1. Local Whittaker model. We now assume that F be a local field. Let G be a quasi-split

group over F . We fix a splitting Spl = (B, T, {Xα}α) of G. This means B = TU is an F -Borel

subgroup, T is a maximal torus and {Xα}α is a set of ΓF invariant root vector.

We fix a splitting Spl of G and an additive character ψ : F → C×. They give rise to

a Whittaker data w = w(Spl,ψ) = (B,ψU ) of G. More generally, for any Levi subgroup M

containing T , they give rise to a Whittaker data wM = wM,Spl,ψ = (BM , ψUM
) of M , where

BM := B ∩M and ψUM
: UM := U ∩M → C× is the character induced by Spl and ψ.

Let π be an irreducible representation of G(F ). Recall that π is called generic, if it sat-

isfies HomU(F )(π, ψU ) ̸= 0. When π is generic, it can be identified with its Whittaker model

W(π, ψU ). Recall that

W(π, ψU ) = {g 7→ λ(π(g)v) | v ∈ π} ⊂ C∞(U(F )\G(F ), ψU ),

where λ is any non-zero element of HomU(F )(π, ψU ) ̸= 0.

When G = Gn1×· · ·×Gnk
is a product of general linear groups, we always fix the standard

splitting.

2.6.2. Jacquet integral. Let P = MPNP be a parabolic subgroup and let π be an irreducible

generic representation of MP (F ).

(2.6.1) Ind
G(F )
P (F ) π can be identified with the following space of functions on G(F ).{

WMP : G(F )→ C | ∀g ∈ G(F ),m ∈M(F ) 7→ δ
− 1

2
P (m)WM (mg) ∈ W(π, ψUM

)

}
.

We denote this space by Ind
G(F )
P (F )(W(π, ψUM

))

Let NP be the unipotent radical of the parabolic subgroup P of G opposite to P . Let

w0 = wℓw
P
ℓ , where wℓ and wMℓ are the longest elements in W and WP , respectively. Denote
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by w̃0 ∈ G(F ) the Tits lifting [LS87, p. 228] of w0 and let N ′ = w̃0NP w̃0
−1. The Jacquet

functional is given by the holomorphic continuation of the Jacquet integral

Ωλ(WMP )(g) =

∫
N ′(F )

WMP (w̃0
−1n′g)ψU (n′)−1dn′.

It induces an isomorphism between Ind
G(F )
P (F )W(πλ, ψUM

) and W(Ind
G(F )
P (F ) πλ, ψU ), where λ ∈

a∗P,C, and πλ denotes the unramified twist of π by λ. When λ = 0, we may simply denote Ωλ

by Ω.

More generally, let P ⊂ Q be standard parabolics. Let wQ0 := wQℓ w
P
ℓ . Let N ′ =

w̃Q0 NP w̃
Q
0

−1

∩ MQ. Then we have a Jacquet functional ΩQ from Ind
G(F )
P (F )W(π, ψUMP

) →

Ind
G(F )
Q(F )W(IndQP π, ψUMQ

), defined by the meromorphic continuation of

ΩQ
λ (WMP )(g) =

∫
N ′(F )

WMP (w̃0
−1n′g)ψUMQ

(n′)−1dn′.

2.6.3. Let G be a product of Gni . Let P,Q be standard parabolics G, and w ∈ W (P,Q).

Let π be a generic representation of MP (F ). The normalized intertwining operator N(w, λ) :

Ind
G(F )
P (F ) πλ → Ind

G(F )
Q(F )(wπ)wλ transports to a map Ind

G(F )
P (F )W(πλ, ψ) → Ind

G(F )
Q(F )W(wπwλ, ψ),

which we will still denote it by N(w, λ), and we write N(w) for N(w, 0).

2.6.4. Now let F be a number field. Let Nn be the unipotent radical of the Borel subgroup

of Gn, we define a generic character ψNn of [Nn] by

ψNn(u) = ψ

(
n−1∑
i=1

ui,i+1

)
.

Assume G = Gn1 × · · · × Gnk
. Let N be the unipotent radical of the Borel subgroup of G

and ψN = ψNn1
⊠ · · ·⊠ψNnk

be the generic character on [N ] = [Nn1 ]× · · · × [Nnk
]. For every

f ∈ T ([G]), we set

Wf =

∫
[N ]

f(ug)ψN (u)−1du.

Let π be a cuspidal representation of G(A), then the map f 7→ Wf gives an isomorphism

between π and its Whittaker model

W(π, ψN ) = {Wf | f ∈ π} .

More generally, let P be a standard parabolic of G and φ ∈ T ([G]P ), we set

WMP
φ (g) =

∫
[MP∩N ]

φ(ug)ψN (u)−1du,

Let π be a cuspidal unitary representation of MP (A), then the map φ ∈ AP,π 7→ WMP
φ gives

an isomorphism between Π = Ind
G(A)
P (A) π and the induction of the Whittaker model

Ind
G(A)
P (A)W(π, ψN ) = {WMP : G(A)→ C, ∀g ∈ G(A),m ∈MP (A) 7→ δ

− 1
2

P (A)(m)WMP (mg) ∈ W(π, ψN )}
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For f ∈ T ([G]) (resp. φ ∈ T ([G]P )) and for a finite set of places S of F , let Wf,S (resp. WMP
φ,S )

be the restriction of Wf (resp. WMP
φ ) to G(FS).

For φ ∈ Π, write E(φ)(g) = E(g, φ, 0) for the Eisenstein series of φ. Let S be a sufficiently

large finite set of places of F . Then it follows from [Sha81, §4] that

WE(φ),S = L(1, π, n̂−P )−1ΩS(W
MP
φ,S ), (2.6.2)

when L(1, π, n̂−P ) has a pole at s = 1, the right hand side is interpreted as 0.

More generally, let R be a standard parabolic subgroup of G containing P , we have that

WMR

ER(φ),S
= L(1, π, n̂RP

−
)−1ΩR

S (WMP
φ,S ). (2.6.3)

2.6.5. We still assume that G is a product of Gni . Let P = MN be a standard parabolic

of G and let φ ∈ Ind
G(A)
P (A) π = AP,π(G) and S be a sufficiently large finite set of places of F ,

which we assume to contain Archimedean places as well as places where φ is ramified. Then

we have a decomposition WM
φ = WM

φ,SW
M,S
φ such that WM,S

φ (1) = 1 and is fixed by KS. For

Nπ(w)φ ∈ Ind
G(A)
Q(A)wπ = AQ,wπ(G), we also have a decomposition

WM (Nπ(w)φ) = WM
S (Nπ(w)φ)WM,S(Nπ(w)φ)

such that WM,S(Nπ(w)φ)(1) = 1 and is fixed by KS. Then it follows from (2.4.1) and (2.4.2)

that

WM
S (Nπ(w)φ) = Nπ,S(w)(WM

φ,S). (2.6.4)

2.7. Topological vector spaces. In this article, a LVTVS means a Hausdorff, locally convex

topological vector space. We refer the readers to [BCZ22, Appendix A] for more details. Let

V,W be two LCTVS. We endow Hom(V,W ) with the pointwise convergence topology. If W

is quasi-complete, then so is Hom(V,W ).

Let V,W,X be LCTVS. Let Bils(V,W ;X) denote the set of separately bilinear map V ×
W → X. It consists of bilinear maps f : V ×W → X such that for any v ∈ V , the map

f(v, ·) : W → X is continuous and for any w ∈W , the map f(·, w) : V → X is continuous.

The set Bils(V,W ;X) is naturally identified with either Hom(V,Hom(W,X)) or Hom(W,Hom(V,X)).

Using the weak topology between Hom between any LCTVS, both Hom(V,Hom(W,X)) and

Hom(W,Hom(V,X)) carry a natural topology. They indeed induce the same topology on

Bils(V,W ;X), which is in fact the locally convex Hausdorff topology given by the semi-norms

f 7→ p(f(v, w)), where (v, w) runs through V ×W and p runs through the continuous semi-

norms on X.

The following fact is standard (see e.g. [BL24, §3.2]):

(2.7.1) A map C → Hom(V,W ), s 7→ Ts is holomorphic if and only if for any v ∈ V , then

map C ∋ s 7→ Ts(v) ∈W is holomorphic.
24



Lemma 2.7.1. (1) Assume that V is LF, W is quasi-complete and let X be a topological

space. Let s ∈M 7→ Ts ∈ Hom(V,W ) be holomorphic and (s, x) ∈M ×X 7→ vs,x ∈ V
be a continuous map which is holomorphic in the first variable. Then, the map (s, x) ∈
M ×X 7→ Ts(vs,x) ∈W is continuous and holomorphic in the first variable.

(2) Assume that V and W are LF. Let s ∈ M 7→ Bs ∈ Bils(V,W ) be holomorphic and

(s, k) ∈M×K 7→ vs,x ∈ V, (s, x) ∈ (M,X) 7→ ws,x ∈W be continuous maps which are

holomorphic in the first variable. Then, the function (s, x) ∈M ×X 7→ Bs(vs,x, ws,x)

is continuous and holomorphic in the first variable.

Proof. See [BCZ22, p. 329]. □

The following lemma is standard

Lemma 2.7.2. Let K be a compact Hausdorff topological group, X be a topological space,

and let f : C ×K ×X → C be a continuous map which is holomorphic in the first variable.

Then for any x ∈ X

s ∈ C 7→
∫
K
f(s, k, x)dk

is holomorphic and the map

x ∈ X 7→
∫
K
f(·, k, x)dk ∈ O(C)

is continuous.

Let M be a complex manifold and let V be a topological vector space. A map f : M → V

is said to be holomorphic, if for any λ ∈ V ′, the map M ∋ m 7→ ⟨λ, f(m)⟩ is holomorphic.

Let C ∈ R∪{−∞} and f : H>C → V be a holomorphic map. We say f is of order at most

d in vertical strips if for every d′ > d, the function z 7→ e−|z|d′]f(z) is bounded in vertical

strips.

We also recall the following version Phragmen-Lindelöf principle [BCZ22, Corollary A.0.11.2].

Proposition 2.7.3. Let W be a LF space, and S ⊂ W be a dense subspace. Let C > 0 and

Z+, Z− : H>C ×W → C be two functions. Assume that

(1) For every s ∈ H>C , Z+(s, ·) and Z−(s, )̇ are continuous functional on W ;

(2) There exists d > 0 such that for every w ∈ W and ϵ ∈ {±}, H>C ∋ Zε(s, w) is a

holomorphic function of order at most d in vertical strips;

(3) For any f ∈ S, s 7→ Zε(s, f) extends to a holomorphic function on C of finite order

in vertical strips satisfying

Z+(s, f) = Z−(−s, f).

Then Z+ and Z− extend to holomorphic functions C → W ′ of finite order in vertical strips

satisfying Z+(s, w) = Z−(−s, w) for every (s, w) ∈ C×W .
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3. Canonical extensions of Rankin-Selberg periods – corank 0 and 1

3.1. Rankin-Selberg period on GLn×GLn+1. In §3.1, we discuss some results on canon-

ical extension Rankin-Selberg period based on [BCZ22, §7].

3.1.1. Set up. Throughout §3.1, let G = GLn×GLn+1 and let H = GLn, regarded as the

diagonal subgroup (h,

(
h

1

)
) of G. For f ∈ S([G]), the Rankin-Selberg period of f is

defined by the absolute convergent integral

PRS(f) :=

∫
[H]

f(h)dh.

3.1.2. Rankin-Selberg regular cuspidal datum. Let χ ∈ X(G) be a cuspidal datum of G. As-

sume that χ is represented by (MP , π), and we write

MP = MPn ×MPn+1 , Mn = Gn1 × · · · ×Gns , Mn+1 = Gm1 × · · · ×Gmt (3.1.1)

and

π = πn ⊠ πn+1, πn = πn,1 ⊠ · · ·⊠ πn,s, πn+1 = πn+1,1 ⊠ · · ·⊠ πn+1,t. (3.1.2)

We say χ is Rankin-Selberg regular, if for any 1 ≤ i ≤ s, 1 ≤ j ≤ t, we have πn,i ̸= π∨n+1,j .

We write XRS ⊂ X([G]) for the set of all the Rankin-Selberg regular cuspidal datum. We

write TRS([G]) (resp. SRS([G])) for TXRS
([G]) (resp. SXRS

([G])).

3.1.3. Zeta integral. Recall that Nn is the unipotent radical of the Borel subgroup of Gn and

we write N = Nn ×Nn+1. We define a character ψ′
N of [N ] by

ψ′
N (u, u′) = ψ

− n−1∑
i=1

ui,i+1 +
n∑
j=1

u′j,j+1

 .

We write NH for N ∩H. For f ∈ T ([G]), we associate

W ′
f (g) =

∫
[N ]

f(ug)ψ′
N (u)−1du.

For f ∈ T ([G]) and s ∈ C, we define the zeta-integral by

ZRS(s, f) =

∫
NH(A)\H(A)

W ′
f (h)|deth|sdh,

provided by the integral is absolutely convergent. For any f ∈ T ([G]), the integral is conver-

gent and holomorphic when Re(s)≫ 0 , see [BCZ22, Lemma 7.1.1.1].
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3.1.4. Main results. The following theorem summarizes the main result of [BCZ22, §7].

Theorem 3.1.1. ([BCZ22, Theorem 7.1.3.1]) Let χ be a Rankin-Selberg regular cuspidal

datum. Then

(1) The linear functional PRS on Sχ([G]) extends (uniquely) by continuity to a linear

functional P∗
RS on Tχ([G]).

(2) For f ∈ Tχ([G]), the zeta integral Z(·, f) extends to an entire function of s. And we

have

P∗
RS(f) = ZRS(0, f).

(3) For any s ∈ C, the functional ZRS(s, ·) on Tχ([G]) is continuous.

We provide a mild extension of Theorem 3.1.1 to TRS([G]).

Proposition 3.1.2. We have the following statements:

(1) The linear functional PRS on SRS([G]) extends (uniquely) by continuity to a linear

functional P∗
RS on TRS([G]).

(2) For f ∈ TRS([G]), the zeta integral Z(·, f) extends to an entire function of s. And we

have

P∗
RS(f) = ZRS(0, f).

(3) For any s ∈ C, the functional ZRS(s, ·) on TRS([G]) is continuous.

Proof. The proof follows the same line of [BCZ22, p. 300], we sketch the proof. For f ∈ S([G]),

we put

Zn(s, f) =

∫
[H]

f(h)|deth|sdh.

It is an entire function in s with the functional equation Z(s, f) = Z(−s, f̃), where f̃(g) =

f(tg−1). In order to apply Proposition 2.7.3, hence prove the proposition, it suffices to prove

that

(3.1.3) Zn(s, f) = ZRS(s, f) for any f ∈ SRS([G]).

For χ ∈ XRS, let fχ be the projection of f in Sχ([G]). Then by Theorem 2.5.1, the sum∑
χ∈XRS

fχ is absolutely summable in S([G]). By the main result of [BCZ22, §7], ZRS(s, fχ) =

Zn(s, fχ) for any χ ∈ XRS. By [BCZ22, Lemma 7.1.1.1], for any s ∈ C such that Re(s) ≫ 0,

we have ∑
χ∈XRS

ZRS(s, fχ) = ZRS(s, f).

where the RHS is absolutely summable. It is clear that Zn(s, f) depends continuously on f

for any s ∈ C, therefore ∑
χ∈XRS

Zn(s, fχ) = Zn(s, f),

therefore (3.1.3) is proved. □
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We endow the topological dual T ′
RS([G]) of TRS([G]) with the weak topology. Since the

natural map TRS([G])→ (T ′
RS([G]))′ is a bijection, we obtain:

(3.1.4) The map ZRS(·, ·) : C→ T ′
RS([G]), s 7→ (f 7→ ZRS(s, f)) is holomorphic.

3.2. Rankin-Selberg period on GLn×GLn. In §3.2, we discuss the canonical extension of

equal rank Rankin-Selberg based on [BLX24, §10.3]. The discussion is parallel to §3.1.

3.2.1. Let G = GLn×GLn and let H = GLn, regarded as the diagonal subgroup of G. For

f ∈ S([G]) and Φ ∈ S(An), the (equal rank) Rankin-Selberg period of f and Φ is defined by

the absolute convergent integral

PRS(f,Φ) :=

∫
[H]

f(h)Θ(h,Φ)dh.

3.2.2. Rankin-Selberg regular cuspidal datum. Let χ ∈ X(G) be a cuspidal datum of G. As-

sume that χ is represented by (P, π), and we write

MP = MP1 ×MP2 , MP1 = Gn1 × · · · ×Gns , MP2 = Gm1 × · · · ×Gmt (3.2.1)

and

π = π1 ⊠ π2, π1 = π1,1 ⊠ · · ·⊠ π1,s, π2 = π2,1 ⊠ · · ·⊠ π2,t. (3.2.2)

We say χ is Rankin-Selberg regular, if for any 1 ≤ i ≤ s, 1 ≤ j ≤ t, we have π1,i ̸= π∨2,j . We

write XRS ⊂ X([G]) for the set of all the Rankin-Selberg regular cuspidal datum. We write

TRS([G]) (resp. SRS([G])) for TXRS
([G]) (resp. SXRS

([G])).

3.2.3. Zeta integral. We define a character ψ′
N of [N ] by

ψ′
N (u, u′) = ψ

− n−1∑
i=1

ui,i+1 +
n−1∑
j=1

u′j,j+1

 .

We write NH for N ∩H. For f ∈ T ([G]), we associate

W ′
f (g) =

∫
[N ]

f(ug)ψ′
N (u)−1du.

For f ∈ T ([G]), Φ ∈ S(An) and s ∈ C, we define the zeta-integral by

ZRS(s, f,Φ) =

∫
NH(A)\H(A)

W ′
f (h)Φ(enh)|deth|s+

1
2 dh,

provided by the integral is absolutely convergent. For any f ∈ T ([G]), the integral is conver-

gent when Re(s)≫ 0 and holomorphic in s, see [BLX24, Lemma 10.2].
28



3.2.4. Main results.

Theorem 3.2.1. ([BLX24, Theorem 10.4, Lemma 10.5]) Let χ be a Rankin-Selberg regular

cuspidal datum and Φ ∈ S(An). Then

(1) The linear functional PRS(·,Φ) on Sχ([G]) extends (uniquely) by continuity to a linear

functional P∗
RS(·,Φ) on Tχ([G]).

(2) For f ∈ Tχ([G]), the zeta integral Z(·, f,Φ) extends to an entire function of s. And

we have

P∗
RS(f) = Z(0, f,Φ).

(3) For any s ∈ C, the bilinear form Z(s, ·, ·) on Tχ([G]) × S(An) is continuous in the

sense that there exists continuous semi-norms ∥ · ∥ and ∥ · ∥′ on Tχ([G]) and S(An)

respectively, such that

Z(s, f,Φ)≪ ∥f∥∥Φ∥′.

Remark 3.2.2. In loc.cit, the theorem is stated for (G,H)-regular cuspidal datum, but the

proof indeed works for general Rankin-Selberg regular cuspidal data. See also the proof of

Lemma 4.5.1.

The following proposition is an analog of Proposition 3.1.2 and we omit the proof.

Proposition 3.2.3. We have the following statements:

(1) The linear functional PRS on SRS([G]) extends (uniquely) by continuity to a linear

functional P∗
RS on TRS([G]).

(2) For f ∈ TRS([G]) and Φ ∈ S(An), the zeta integral Z(·, f,Φ) extends to an entire

function of s.

(3) For any s ∈ C, the bilinear map Z(s, ·, ·) on TRS([G])× S(An) is continuous.

By the same argument of (3.1.4), we obtain that for any Φ ∈ S(An), the map ZRS(·,Φ, ·) :

C→ T ′
RS([G]), s 7→ (f 7→ ZRS(s,Φ, f)) is holomorphic.

Therefore, by (2.7.1), we see that

(3.2.3) The map ZRS(·, ·, ·) : C → Bils(TRS([G]),S(An);C), s 7→ ((f,Φ) 7→ ZRS(s, f,Φ)) is

holomorphic.

3.2.5. A twisted version. Let wℓ =

(
1

. .
.

1

)
∈ Gn be the longest Weyl group element. For

f ∈ S([G]) and Φ ∈ S(An), we define

P̃RS(f,Φ) :=

∫
[Gn]

f(wℓ
tg−1wℓ, g)Θ(g,Φ)dg.

For f ∈ T ([G]), Φ ∈ S(An) and s ∈ C, we put the twisted Zeta integral

Z̃RS(s, f,Φ) =

∫
Nn(A)\Gn(A)

Wf (wℓ
tg−1wℓ, g)Φ(eng)|det g|s+

1
2 dg,
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provided by the integral is absolutely convergent.

Let χ ∈ X(G). Assume that χ is represented by (M,π) where M and π are as in (3.2.1)

and (3.2.2). We say that χ is twisted Rankin-Selberg regular, if for any 1 ≤ i ≤ s, 1 ≤ j ≤ t, we

have π1,i ̸= π2,j . Let X̃RS ⊂ X(G) denote the set of twisted Rankin-Selberg regular cuspidal

datum. We write T
R̃S

([G]) for T
X̃RS

([G]).

Corollary 3.2.4. We have the following statements:

(1) For f ∈ T ([G]) and Φ ∈ S(An), there exists C > 0 such that the integral defining

Z̃RS(s, f,Φ) is convergent for Re(s) > C and defines a holomorphic function on H>C .
(2) For any Φ ∈ S(An), the linear functional P̃RS(·,Φ) on S

R̃S
([G]) extends (uniquely) by

continuity to a continuous linear functional P̃RS(·,Φ) on T
R̃S

([G]).

(3) For any f ∈ T
R̃S

([G]) and Φ ∈ S(An), the zeta integral Z̃RS(·, f,Φ) extends to an

entire function. And we have

P̃RS(f,Φ) = Z̃RS(0, f,Φ)

(4) For any s ∈ C, the bilinear map Z̃RS(s, ·, ·) on T
R̃S

([G])× S(An) is continuous.

Proof. For a function f on [G], we put a new function f ′ by f ′(g1, g2) = f(wℓ
tg−1

1 wℓ, g2).

Then f ∈ S([G]) (resp. T ([G])) if and only if f ′ ∈ S([G]) (resp. f ′ ∈ T ([G])). Moreover,

f 7→ f ′ induces an isomorphism of S([G]) (resp. T ([G])) to itself.

Note that for f ∈ S([G]) and Φ ∈ S(An), we have PRS(f,Φ) = P̃RS(f ′,Φ). For f ∈ T ([G])

and Φ ∈ S(An), we have ZRS(s, f,Φ) = Z̃RS(s, f ′,Φ). The corollary then easily follows from

Proposition 3.1.2. □

By (3.2.3), we see that

(3.2.4) The map Z̃RS(·, ·, ·) : C → Bils(TR̃S
([G]),S(An);C), s 7→ ((f,Φ) 7→ Z̃RS(s, f,Φ)) is

holomorphic.

3.2.6. Euler decomposition. Let S be a finite set of places of F , let σ = σn ⊠ σ′n be a generic

irreducible representation of G(FS). For W ∈ W(σ, ψN,S) and Φ ∈ S(FS), we define local

(twisted) Rankin-Selberg integral [JPS83] as

Z̃RS
S (s,W,Φ) :=

∫
Nn(FS)\Gn(FS)

W (wℓh
−1wℓ, h)Φ(enh)|deth|s+

1
2 dh.

The integral defining Z̃RS
S (s,W,Φ) is convergent when Re(s)≫ 0 and has meromorphic con-

tinuation to C. Moreover, by [JPS83] and [Jac09], for any W ∈ W(σ, ψN,S) and Φ ∈ S(FS),

the quotient

Z̃RS
S (s,W,Φ)

LS(s+ 1
2 , σ

∨
n × σ′n)

is entire.
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Let P ⊂ G be a standard parabolic subgroup and let π be a cuspidal automorphic repre-

sentation of MP . Assume that (MP , π) gives a twisted Rankin-Selberg regular cuspidal data

χ. Let Π = Ind
G(A)
P (A) π = Πn ⊠ Π′

n. Let φ ∈ Π and Φ ∈ S(An).

Let S be a sufficiently large set of places of F , that we assume to contain Archimedean

places as well as the places where Π, ψ, φ or Φ is ramified. We then have a decomposition

WE(φ) = WE(φ),SW
S
E(φ) such that W S

E(φ)(1) = 1 and is fixed by KS. We also write Φ as

Φ = ΦSΦ
S, where ΦS is the characteristic function of OS

F and ΦS ∈ S(FS).

By the unramified computation for the Rankin-Selberg integral, we have

Z̃RS(s, E(φ),Φ) = (∆S,∗
Gn

)−1Z̃RS
S (s,WE(φ),S,ΦS)L

S(s+
1

2
,Π∨

n ×Π′
n). (3.2.5)

4. Canonical extensions of Rankin-Selberg periods – higher corank

4.1. Statements of main results.

4.1.1. Notations. In §4, n ≥ 0,m ≥ 2 be integers. Let G = Gn ×Gn+m. Let H = Gn be the

subgroup of G consisting of matrices of the form (g,diag(g, 1m)).

For integers 0 ≤ r ≤ k, let Nr,k be the unipotent radical of the standard parabolic subgroup

of Gk with Levi Gr×Gk−r1 . Note that N0,k = N1,k is the upper triangular unipotent subgroup

of Gk and Nk,k = {1}.
For 0 ≤ r ≤ n, we then put

NG
r := Nr,n ×Nr,n+m, NH

r := NG
r ∩H ∼= Nr,n.

In particular, N := NG
0 is a maximal unipotent subgroup of G and NH := N ∩H = NH

0 is a

maximal unipotent subgroup of H.

We also put

NG
n+1 := 1×Nn+1,n+m.

We define a character ψN of [N ] by

ψ′
N (u, u′) = ψ

− n−1∑
i=1

ui,i+1 +

n+m−1∑
j=1

u′j,j+1

 , u ∈ [Nn], u′ ∈ [Nn+m].

For 1 ≤ r ≤ n+ 1, ψ′
N restricts to a character on the subgroup NG

r , we denote it by ψ′
r.

4.1.2. Rankin-Selberg regular cuspidal datum. Let χ ∈ X(G), assume that χ is represented by

(M,π), where we write

M = Mn ×Mn+m, Mn = Gn1 × · · · ×Gns , Mn+m = Gm1 × · · · ×Gmt , (4.1.1)

and

π = πn ⊠ πn+m, πn = πn,1 ⊠ · · ·⊠ πn,s, πn+m = πn+m,1 ⊠ · · ·⊠ πn+m,t. (4.1.2)
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we say that χ is Rankin-Selberg regular, for any 1 ≤ i ≤ s and 1 ≤ j ≤ k we have

πn,i ̸= π∨n+m,j .

Let XRS denote the set of Rankin-Selberg regular cuspidal datum. We write SRS([G]) (resp.

TRS([G])) for SXRS
([G]) (resp. TRS([G])).

4.1.3. Zeta integrals. For f ∈ T ([G]), let

W ′
f (g) =

∫
[N ]

f(ug)ψ′
N (u)−1du

be its Whittaker model. For s ∈ C, we put

ZRS(s, f) =

∫
NH(A)\H(A)

W ′
f (h)|deth|sdh

provided by the integral is absolutely convergent.

Lemma 4.1.1. For any N > 0, then there exist cN > 0 such that

(1) For every f ∈ TN ([G]), the integral defining ZRS(s, f) is absolutely convergent for

Re(s) > cN , and Z(·, f) is holomorphic and bounded in vertical strips on H>cN .
(2) For every s ∈ H>cN , the functional f 7→ ZRS(s, f) is continuous.

The proof the Lemma 4.1.1 will be given in §4.4.4.

4.1.4.

Theorem 4.1.2. We have the following assertions:

(1) For any f ∈ S([G]), the Rankin-Selberg period

PRS(f) :=

∫
[H]

fNG
n+1,ψ

′
n+1

(h)dh

is absolutely convergent.

(2) The restriction of PRS to SRS([G]) extends by continuity to a linear functional P∗
RS

on TRS([G]).

(3) For f ∈ TRS([G]), the zeta integral Z(·, f) extends to an entire function of s. And we

have

P∗
RS(f) = ZRS(0, f)

(4) For any s ∈ C, the functional ZRS(s, ·) is continuous.

The rest of §4 is devoted to the proof of Theorem 4.1.2.

4.2. Proof of Theorem 4.1.2.
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4.2.1. An unfolding identity. For f ∈ S([G]) and s ∈ C, we put

Zn+1(s, f) =

∫
[H]

fNG
n+1,ψ

′
n+1

(h)|deth|sdh. (4.2.1)

Lemma 4.2.1. For any f ∈ S([G]), the integral defining Zn+1(s, f) is absolutely convergent

for any s ∈ C, and s 7→ Zn+1(s, f) is entire. Moreover, for any s ∈ C, the map f 7→ Zn+1(s, f)

is continuous on S([G]).

The proof of the Lemma 4.2.1 will be given in §4.4.2.

Proposition 4.2.2. Let χ be an Rankin-Selberg regular cuspidal data. Then for any f ∈
Sχ([G]), we have

Zn+1(s, f) = ZRS(s, f)

holds for Re(s) sufficiently large.

The proof of Proposition 4.2.2 will be given in §4.5.

Corollary 4.2.3. Let f ∈ SRS([G]). For Re(s)≫ 0, we have

Zn+1(s, f) = ZRS(s, f)

holds for Re(s) sufficiently large.

Proof. By Theorem 2.5.1, we have a decomposition

f =
∑
χ∈XRS

fχ,

where fχ ∈ Sχ([G]) and the sum is absolutely summable in S([G]). By Lemma 4.1.1 and

Lemma 4.2.1, both Zn+1(s, ·) and ZRS(s, ·) is continuous when Re(s) is large enough. The

result follows. □

4.2.2. Another zeta integral. For f ∈ T ([G]), we put

W ′′
f (g) :=

∫
[N ]

f(ug)ψ′
N (u)du, g ∈ Gn+m(A).

Then we define

Z ′
1(s, f) =

∫
NH(A)\H(A)

∫
Mat(m−1)×n(A)

W ′′
f

h,
1n

x 1m−1

1

h

 |deth|sdxdh. (4.2.2)

provided by the integral is absolutely convergent.

Lemma 4.2.4. For any N > 0, there exists cN > 0 such that

(1) For any f ∈ TN ([G]), the double integral defining Z ′
1(s, f) is absolutely convergent for

Re(s) > cN , and Z(·, f) is holomorphic and bounded in vertical strips on H>cN .
(2) For every s ∈ H>cN , the functional f 7→ Z ′

1(s, f) is continuous.
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The proof of the Lemma 4.2.4 will be given in §4.4.5.

4.2.3. Another unfolding identity. Let wℓ,m denote the matrix


1

. .
.

1

 of size m. Let

wn,m denote the matrix

(
1n

wℓ,m

)
. For a function f on [G], we put f̃(g) := f(tg−1).

Proposition 4.2.5. Let χ be an Rankin-Selberg regular cuspidal data. Then for any f ∈
Sχ([G]), we have

Zn+1(s, f) = Z ′
1(−s,R(wn,m)f̃),

when Re(s) is sufficiently large.

The proof of Proposition 4.2.5 will be given in §4.5.

By the same argument of Corollary 4.2.3,

(4.2.3) Zn+1(s, f) = Z ′
1(−s,R(wn,m)f̃), holds for any f ∈ SRS([G]).

4.2.4. Proof of Theorem 4.1.2. Assertion (1) is a special case Lemma 4.2.1. Fix N > 0, we

apply Proposition 2.7.3 to

W = L2
N,RS([G])∞, S = SRS([G]), Z+(s, f) = ZRS(s, f), Z−(s, f) = Z ′

1(s,R(wn,m)f̃).

The conditions of Proposition 2.7.3 are satisifed by Lemma 4.1.1, Lemma 4.2.4, Lemma 4.2.1,

Corollary 4.2.3 and (4.2.3).

As a consequence, for any f ∈ L2
N,RS([G])∞, ZRS(s, f) is entire and for any s ∈ C, the map

f 7→ ZRS(s, f). As N varies, Assertion (4) is proved.

For f ∈ L2,∞
N ([G])∞, we put

P∗
RS(f) := Z(0, f),

by Corollary (4.2.3), P∗
RS defines a continuous extension of PRS to L2

N ([G])∞. As N varies,

assertions (2) and (3) are proved.

4.2.5. We endow the topological dual T ′
RS([G]) with the weak topology, from Theorem 4.1.2,

we see that

(4.2.4) The map ZRS(·, ·) : C→ T ′
RS([G]), s 7→ (f 7→ ZRS(s, f)) is holomorphic.

4.3. Exchange of root identity. We prove an exchange of root identity in the style of

[MS11, Appendix A], [IT13, §4]. The main result is Corollary 4.3.3.
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Figure 1. The unipotent subgroups Ur, U ′
r, Rr and Cr

4.3.1. Settings. For 0 ≤ r ≤ m − 1, let Ur denote the unipotent subgroup of Gn+m of the

shape in the left of figure 4.3.1.

It consists of matrices (uij) with 1 on the diagonal and uij ̸= 0 only when j > i > n or

1 ≤ i ≤ n, j ≥ n+ r + 2 or 1 ≤ j ≤ n and n+ 1 ≤ i ≤ n+ r. Note that U0 = Nn+1,n+m

Let ψr denote the character (uij) 7→ ψ(un+1,n+2 + · · ·+ un+m−1,n+m) on Ur(A).

For r ≥ 1 and x ∈ An, let Rr(x) denote the matrix


1n

1r−1

x 1

1m−r

. We write Rr

for the algebraic subgroup of Gn+m formed by Rr(x).

4.3.2.

Lemma 4.3.1. Let 1 ≤ r ≤ m− 1 and 1 ≤ k ≤ r. Let f ∈ T ([Gn+m]). The integral

∫
Matk×n(A)

fUr−k,ψr−k




1n

1r−k

x 1k

1m−r

 g

dx (4.3.1)

is absolutely convergent for any g ∈ Gn+m(A).

The proof of Lemma 4.3.1 will be given in §4.3.5.

4.3.3.

Lemma 4.3.2. Let f ∈ T ([Gn+m]) and 1 ≤ r ≤ m− 1, then

fUr,ψr(g) =

∫
An

fUr−1,ψr−1(Rr(x)g)dx (4.3.2)

holds for any g ∈ Gn+m(A), where the integral on the right-hand side is convergent.
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Proof. The convergence of the integral follows from Lemma 4.3.1. For 1 ≤ r ≤ m − 1, let

U ′
r := Ur ∩ Ur−1 denote the subgroup of Ur, see the shaded region of right hand side of figure

4.3.1. Let ψ′
r denote the restriction of ψr (equivalently ψr−1) on U ′

r.

For y ∈ An, let Cr(y) denote the element


1n y

1r−1

1

1m−r

 of Gn+m(A). Let Cr

denote the algebraic subgroup of Gn+m formed by Cr(y).

The following statements can be checked directly:

(1) Ur = U ′
r ⋊Rr, Ur−1 = U ′

r ⋊ Cr, Rr normalizes Ur−1 and Cr normalizes Ur.
(2) By (1) above, we can write an element of Ur−1(A) by u′Cr(y), where u′ ∈ U ′

r(A) and

y ∈ An. For a ∈ Fn, the map u′Cr(y) 7→ ψr(u
′)ψ(ay) defines a character of Ur−1(A)

trivial on Ur−1(F ). We denote this character by ψr−1,a. Note that ψr−1,0 = ψr−1.

(3) The equality

ψr−1(Rr(−a)uRr(a)) = ψr−1,−a(u) (4.3.3)

holds for any a ∈ Fn, u ∈ Ur−1(A).

(4) As a consequence of (3) above, the equation

ψ′
r(Rr(−a)uRr(a)) = ψ′

r(u) (4.3.4)

holds for any a ∈ Fn and u ∈ U ′
r(A). Similarly, one can check

ψ′
r(Cr(−b)uCr(b)) = ψ′

r(u) (4.3.5)

holds for any b ∈ Fn and u ∈ U ′
r(A).

By (4.3.4) above, for any g ∈ Gn+1(A), we have

fUr,ψr(g) =

∫
Fn\An

fU ′
r,ψ

′
r
(Rr(x)g)dx. (4.3.6)

By (4.3.5), for any g ∈ Gn+m(A), the map y 7→ fU ′
r,ψ

′
r
(Cr(y)g) defines a function on Fn\An.

Therefore, by Fourier expansion, we can write

fU ′
r,ψ

′
r
(g) =

∑
a∈Fn

∫
Fn\An

fU ′
r,ψ

′
r
(Cr(y)g)ψ−1(ay)dy =

∑
a∈Fn

fUr−1,ψr−1,−a(g) (4.3.7)

By (4.3.3), we have

fUr−1,ψr−1,−a(g) = fUr−1,ψr−1(Rr(a)g). (4.3.8)

Combining (4.3.6), (4.3.7) and (4.3.8) and Lemma 4.3.1, (4.3.2) is proved. □
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4.3.4.

Corollary 4.3.3. For any f ∈ T ([Gn+m]), we have

fUm−1,ψm−1(g) =

∫
Mat(m−1)×n(A)

fU0,ψ0


1n

x 1m−1

1

 g

dx,

where the integral of the right-hand side is absolutely convergent.

Proof. The convergence of the right-hand side follows from Lemma 4.3.1.

The equality follows from successively using Lemma 4.3.2. The convergence of each step

also follows from Lemma 4.3.1. □

4.3.5. Convergence.

Proof of Lemma 4.3.1. We temporarily denote by P the standard parabolic subgroup ofGn+m

whose Levi factor is Gr−k1 ×Gn ×Gm−r+k
1 . Let ψNP

denote the character

(uij) 7→ ψ(u12 + · · ·+ ur−k−1,r−k + ur−k,n+r−k+1 + un+r−k+1,n+r−k+2 + · · ·+ un+m−1,n+m)

on NP (A). When r − k = 0, this is understood as (uij) 7→ ψ(un,n+1 + · · · + un+m−1,n+m).

When r − k = 1, this is understood as (uij) 7→ ψ(u1,n+2 + un+2,n+3 + · · ·+ un+m−1,n+m).

Let w ∈ Gn+m(F ) be the permutation matrix associated to the permutation sending

1, 2, · · · , n+m to n+ 1, · · · , n+ r − k, 1, · · · , n, n+ r − k + 1, · · · , n+m respectively. Then

the right hand side of (4.3.1) can be written as

∫
Matk×n(A)

fNP ,ψNP




1r−k

1n

x 1k

1m−r

 gw

dx. (4.3.9)

Therefore we are reduced to show the convergence of (4.3.9). Let Q be the parabolic subgroup

of Gn+k whose Levi factor is Gn × (G1)
k. Assume that

(
1n

x 1k

)
is written as (2.2.2), then

we have the Iwasawa decomposition
1r−k

1n

x 1k

1m−r

 = u′(x)


1r−k

g(x)

t(x)

1m−r

 k′(x)

for some (u′(x), k′(x)) ∈ NP (A) × Kn+m. Write t(x) as diag(t1(x), · · · , tk(x)), assume that

f ∈ TN ([Gn+m]), by Lemma 2.3.5, we see that the integral (4.3.9) is essentially bounded by∫
Matk×n(A)

k−1∏
i=1

∥ti(x)ti+1(x)−1∥−N1
A ∥tk(x)∥−N1

A

k∏
i=1

∥ti(x)∥NG1
∥g∥NGn

dx (4.3.10)
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for any N1 > 0. Note that for any N2 > 0, there exists N1 > 0, such that

k−1∏
i=1

∥ti(x)ti+1(x)−1∥−N1
A ∥tk(x)∥−N1

A ≪
k∏
i=1

∥ti(x) · · · tn(x)∥−N2 . (4.3.11)

Combining (4.3.11), (2.2.3) and (2.2.4), we see that the integral (4.3.10) is bounded by∫
Matk×n(A)

∥x∥−N2

Matk×n(A)
dx

for any N2 ≫ 0. The convergence hence follows. □

4.4. Convergence of zeta integrals.

4.4.1. More zeta integrals. The goal of §4.4 is to prove convergence of various zeta integrals.

For later use in §4.5, we introduce more zeta integrals. Let f ∈ S([G]). For 1 ≤ r ≤ n+ 1,

we define

Zr(s, f) =

∫
Pr(F )NH

r (A)\H(A)
fNG

r ,ψ
′
r
(h)|deth|sdh.

Note that when r = n+1, this coincides with the definition in (4.2.1), and Z1(s, f) = ZRS(s, f)

For 1 ≤ r ≤ n, we also introduce

Z ′
r(s, f) =

∫
Pr(F )Nr,n(A)\Gn(A)

∫
Mat(m−1)×n(A)

f
NG

r ,ψ
′,−1
r

h,
1n

x 1m−1

1

h

 |deth|sdh.

Note that when r = 1, this coincides with the definition in (4.2.2). And we put

Z ′
n+1(s, f) =

∫
[Gn]

∫
Mat(m−1)×n(A)

f
NG

n+1,ψ
′,−1
n+1

h,
1n

x 1m−1

1

h

 |deth|sdh.

Lemma 4.4.1. For f ∈ S([G]) and 1 ≤ r ≤ n+ 1, the integral defining Zr(s, f) and Z ′
r(s, f)

are absolutely convergent when Re(s) is sufficiently large.

4.4.2. Proof of Lemma 4.2.1. By Lemma 2.3.2, for any N,M > 0, there exists a continuous

semi-norm ∥ · ∥ on S([G]), such that the integral defining Zn+1(s, f) is bounded by

∥f∥ ·
∫
[H]
∥h∥−NH ∥h∥

−M
H δPn+1,n+m(h)−cM |deth|Re(s)dh

for some constants c > 0 and any N,M > 0. The result follows.
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4.4.3. Proof of Lemma 4.4.1. LetQr denote the parabolic subgroup ofH with Levi component

Gr × Gn−r1 . Convergence of Zn+1(s, f) is covered in Lemma 4.2.1. For 1 ≤ r ≤ n, let Pr

denote the parabolic subgroup of G with Levi component (Gr × Gn−r1 ) × (Gr × Gm+n−r
1 ).

Using Iwasawa decomposition H(A) = Qr(A)Kn. The integral defining Zr(s, f) is bounded

by∫
Pr(F )\Gr(A)

∫
[G1]n−r

∫
Kn

∣∣∣∣∣R(k)fNG
r ,ψ

′
r

(
h

t

)∣∣∣∣∣ |deth|s|det t|sδQr

(
h

t

)−1

dhdtdk. (4.4.1)

By Lemma 2.3.5, there exists c > 0 such that for any N > 0 and N1 > 0, we have∣∣∣∣∣R(k)fNG
r ,ψ

′
r

(
h

t

)∣∣∣∣∣≪
∥t−1

1 erhr∥−2N1
Ar

∥t1t−1
2 ∥

−2N1
A · · · ∥tn−r−1t

−1
n−r∥

−2N1
A ∥tn−r∥−N1

A δPr

(
h

t

)−cN

∥h∥−NGr
∥t∥−NGr

1
,

where t = diag(t1, · · · , tn−r). Since for any N2 > 0 there exists N1 > 0 such that

∥t−1
1 erhr∥−2N1

Ar
∥t1t−1

2 ∥
−2N1
A · · · ∥tn−r−1t

−1
n−r∥

−2N1
A ∥tn−r∥−N1

A ≪ ∥erh∥−N2
A ∥t1∥−N2

A · · · ∥tn−r∥−N2
A .

We then see that the integral (4.4.1) is essentially bounded by∫
Pr(F )\Gr(A)

∫
[G1]n−r

∥erh∥−N2
A

n−r∏
i=1

∥ti∥−N2
A |deth|s−α(N)

t−r∏
i=1

|ti|s−αi(N)∥h∥−NGn
dhdt, (4.4.2)

for some c > 0 and any N > 0 and N2 > 0, where

α(N) = 2c(n+m−r)N+n−r, αi(N) = c(2n+m−4r+2−4i)N+(n−2r+1−2i). (4.4.3)

We have α(N) > α1(N) > · · · > αn−r(N). Let C = 2 in Corollary 2.3.4, together with

Corollary 2.2.5, we see that there exists N0 > 0 such that for any C1 > 0 and N > N0, the

integral is convergent for

−2 + α(N) < Re(s) < 2 + α(N) and 1 + α1(N) < Re(s) < C1 + αn−r(N).

As N and C1 vary, we see that the integral is convergent when Re(s)≫ 1. This shows Lemma

4.4.1 for Zr(s, f).

To show the convergence of Z ′
r(s, f). We prove the case when 1 ≤ r ≤ n, the case when

r = n+1 follows from a similar (and easier) argument. For simplicity, for x ∈ Mat(m−1)×n we

write A(x) for the matrix

1n

x 1m−1

1

. The absolute convergence of Z ′
r(s, f) is equivalent

to the convergence of∫
Pr(F )Nr,n(A)\Gn(A)

∫
Mat(m−1)×n(A)

∣∣∣fNG
r ,ψ

′,−1
r

(h, hA(x))
∣∣∣ |deth|Re(s)−mdh.
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Using Iwasawa decomposition, note that for k ∈ Kn, kA(x)k−1 = A(xk), the integral can

be written as

∫
Pr(F )\Gr(A)

∫
[G1]r

∫
Kn

∫
Mat(m−1)×n(A)

∣∣∣∣∣fNG
r ,ψ

′,−1
r

((
h

t

)
k,

(
h

t

)
A(x)k

)∣∣∣∣∣
|deth|Re(s)−m|det t|Re(s)−mδQr

(
h

t

)−1

dxdkdtdh.

(4.4.4)

Let Rr (resp. R′
r) denote the parabolic subgroup of Gn+m (resp. Gn+m−1) with Levi compo-

nent Gr×Gn+m−r
1 (resp. Gr×Gn+m−r−1

1 ). Let

(
1n

x 1m

)
= n′(x)m′(x)k′(x) be a measurable

decomposition of

(
1n

x 1m

)
under the Iwasawa decomposition NR′

r
(A)MR′

r
(A)Kn+m−1 (see

§2.2.5). Then we can write A(x) as

(
n′(x)

1

)(
m′(x)

1

)(
k′(x)

1

)
=: n(x)m(x)k(x),

which is an Iwasawa decomposition of A(x) under Gn+m(A) = NRr(A)MRr(A)Kn+m. We also

writem(x) asm(x) = diag(h(x), t(x), t′(x), 1), where h(x) ∈ GLr(A), t(x) = diag(t1(x), · · · , tn−r(x))

and t′(x) = diag(t′1(x), · · · , t′m−1(x)). The integral (4.4.4) then can be written as

∫
Pr(F )\Gr(A)

∫
[G1]r

∫
Kn

∫
Mat(m−1)×n(A)

∣∣∣∣∣(R(k, kk(x))f)
NG

r ,ψ
′,−1
r

((
h

t

)
,

(
h

t

)
m(x)

)∣∣∣∣∣
|deth|Re(s)−m|det t|Re(s)−mδQr

(
h

t

)−1

dxdkdtdh.

(4.4.5)

We will use the notation from Lemma 2.3.5. Let l denote the map

(u, u′) ∈ NPr 7→
n−1∑
i=r

ui,i+1 −
n+m−1∑
j=r

uj,j+1 ∈ Ga.

One readily checks that there exists N0 > 0 such that

∥∥∥∥∥∥Ad∗

((
h

t

)
,

(
h

t

)
m(x)

)−1

l

∥∥∥∥∥∥
VPr ,A

≫ ∥erhh(x)∥N0

n−r∏
i=1

∥titi(x)∥N0

m−1∏
i=1

∥t′(x)∥N0 .
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Therefore, by Lemma 2.3.5, we have∣∣∣∣∣R(k, kk(x))f
NG

r ,ψ
′,−1
r

((
h

t

)
,

(
h

t

)
m(x)

)∣∣∣∣∣≪ ∥erhh(x)∥−N1
Ar

n−r∏
i=1

∥titi(x)∥−N1
A

m−1∏
i=1

∥t′i(x)∥−N2
A

∥h∥−NGr
∥t∥−NGr

1
∥tt(x)∥−NGr

1
∥t′(x)∥−N

Gm−1
1

δPr

((
h

t

)
,

(
h

t

)
m(x)

)−cN

.

(4.4.6)

for some c > 0 and any N1, N2 > 0 and N > 0. By Lemma 2.2.2, for any N3 > 0, we can find

N2 > 0 such that right hand side of (4.4.6) is essentially bounded by

∥erh∥−N1

n−r∏
i=1

∥ti∥−N1∥x∥−N3

Mat(m−1)×n(A)
∥h∥−NGr

∥t∥−NGr
1
δPr

(h
t

)
,

h t

1m




−cN

Therefore the integral (4.4.5) is essentially bounded by∫
Pr(F )\Gr(A)

∫
[G1]r

∫
Mat(m−1)×n(A)

∥erh∥−N1
Ar

n−r∏
i=1

∥ti∥−N1
A ∥x∥−N3

Mat(m−1)×n(A)
∥h∥−NGr

∥t∥−NGr
1

|deth|Re(s)−α(N)−m
n−r∏
i=1

|ti|Re(s)−αi(N)−mdxdhdt

(4.4.7)

for any N,N1, N3 > 0, where α(N) and αi(N) is as in (4.4.3). The convergence follows from

the convergence of (4.4.2) when Re(s)≫ 0.

4.4.4. Proof of Lemma 4.1.1. Let BH be the upper triangular Borel subgroup of H. By

Iwasawa decomposition H(A) = BH(A)Kn, the integral defining ZRS(s, f) is bounded by∫
[Gr

1]

∫
Kn

|W ′
R(k)f (t)||det t|sδBH

(t)−1dtdk.

Similar to the derivation of (4.4.2), for any N2 > 0, there exists a continuous semi-norm ∥ · ∥
on TN ([G]), such that the integral is essentially bounded by

∥f∥ ·
∫
[Gr

1]

n∏
i=1

∥ti∥−N2 |ti|Re(s)−(n+1−2i)∥t∥NG1
dt.

Note that there exists M > 0 such that

∥t∥G1 ≪ max{|t|M , |t|−M}, (4.4.8)

therefore the result follows from Corollary 2.2.5.
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4.4.5. Proof of Lemma 4.2.4. Let

(
1

x 1m

)
= n′(x)t′(x)k′(x) be a measurable decomposition

underGn+m−1(A) = Nn+m−1(A)Tn+m−1(A)Kn+m−1. ThenA(x) =

(
n′(x)

1

)(
t′(x)

1

)(
k′(x)

1

)
:=

n(x)t(x)k(x), where t(x) = diag(t1(x), · · · , tn(x), t′1(x), · · · , t′m−1(x), 1). Same as the deriva-

tion of (4.4.5), the integral defining Z ′
1(s, f) is essentially bounded by∫

[G1]r

∫
Kn

∫
Mat(m−1)×n(A)

∣∣∣W ′′
R(k,kk(x))f (t, tt(x))

∣∣∣ |det t|Re(s)−mδBH
(t)−1dxdkdt.

The using the same argument for (4.4.7), for any N1, N3 > 0, there exists a continuous

semi-norm ∥ · ∥ on TN ([G]), such that this integral is essentially bounded by

∥f∥ ·
∫
[G1]r

∫
Mat(m−1×n)(A)

n∏
i=1

∥ti∥−N1∥x∥−N3

Mat(m−1)×n(A)
∥t∥NG1

n∏
i=1

|ti|Re(s)−m−n−1+2idxdt,

Using (4.4.8) and Corollary 2.2.5, the result follows.

4.5. Unfolding. The goal of §4.5 is to prove Proposition 4.2.2 and Proposition 4.2.5.

Recall the subgroup U0 and the character ψ0 on U0(A) defined in §4.3.1. By the change of

variable h 7→ th−1, for any f ∈ S([G]) we have

Zn+1(s, f) =

∫
[H]

(R(wn,m)f̃){1}×U0,ψ
−1
0

(h)|deth|−sdh.

Therefore by Corollary 4.3.3 and the absolute convergence of Z ′
n+1, we see that

Zn+1(s, f) = Z ′
n+1(−s,R(wn,m)f̃).

Therefore we are left to show:

Lemma 4.5.1. Let χ ∈ X(G) be an Rankin-Selberg regular cuspidal data. Then for any

1 ≤ r ≤ n and f ∈ Sχ([G]),

Zr(s, f) = Zr+1(s, f), Z ′
r(s, f) = Z ′

r+1(s, f)

holds when Re(s) is sufficiently large.

Proof. For 1 ≤ r ≤ n, recall from the introduction, we regard Ur as a subgroup of Gn. We put

UGr := Ur×Ur ⊂ G. We also define UGn+1 := {1}×Un+1. For 1 ≤ r ≤ n+1 Let UHr := UGr ∩H.

For 1 ≤ r ≤ n, using Fourier expansion on the compact abelian group UHr (A)UGr (F )\UGr (A),

we can write∫
[UH

r ]
fNG

r+1,ψ
′,±
r

(ug)du = (fNG
r+1,ψ

′,±
r

)UG
r+1

(g) +
∑

γ∈Pr(F )\Gr(F )

(fNG
r+1,ψ

′,±
r

)UG
r+1,ψ

±((γ, γ)g),

where

(fNG
r+1,ψ

′,±
r

)UG
r+1

(g) =

∫
[UG

r+1]
fNG

r+1,ψ
′,±(ug)dg,

42



and ∑
γ∈Pr(F )\Gr(F )

(fNG
r+1,ψ

′,±
r

)UG
r+1,ψ

±(g) =

∫
[UG

r+1]
fNG

r+1,ψ
′,±(ug)ψ′,±

N (u)du = fNG
r ,ψ

′,±
r

(g).

We then formally have that 1 ≤ r ≤ n

Zr+1(s, f) = Zr(s, f) + Fr(s, f), Z ′
r+1(s, f) = Z ′

r(s, f) + F ′
r(s, f), (4.5.1)

where

Fr(s, f) =

∫
Gr(F )NH

r (A)\H(A)
(fNG

r+1,ψ
′
r
)UG

r+1
(h)|deth|sdh,

and

F ′
r(s, f) =

∫
Gr(F )Nr,n(A)\Gn(A)

∫
Mat(m−1)×n(A)

(f
NG

r+1,ψ
′,−1
r

)UG
r+1

h,
1n

x 1m−1

1

h

 |deth|sdh

=

∫
Gr(F )Nr,n(A)\Gn(A)

∫
Mat(m−1)×n(A)

(f
NG

r+1,ψ
′,−1
r

)UG
r+1

h, h
1n

x 1m−1

1


 |deth|s−mdh

To verify (4.5.1), we need to show that:

Lemma 4.5.2. The integral defining Fr(s, f) and F ′
r(s, f) are absolutely convergent when

Re(s)≫ 0.

Assume Lemma 4.5.2 for now, it remains to show Fr(s, f) = F ′
r(s, f) = 0 for Re(s) ≫ 0

and 1 ≤ r ≤ n. Note that Fr(s, f) = 0 (for any f and ψ) implies F ′
r(s, f) = 0. We now prove

that Fr(s, f) = 0 for Re(s) ≫ 0. We temporarily denote by Pr the parabolic subgroup of G

with Levi component (Gr ×Gn−r)× (Gr ×Gn+m−r).

(fNG
r+1,ψ

′
r
)UG

r+1
(g)

=

∫
[Nn−r]

∫
[Nm+n−r]

fPr

(((
1r

u

)
,

(
1r

u′

))
g

)
ψNn−r(u)−1ψNm+n−r(u′)dudu′.

Let Qr be the parabolic subgroup of Gn with Levi component Gr×Gn−r. Using the Iwasawa

decomposition Gn(A) = Qr(A)Kn, we can write Fr(s, f) as∫
[Gr]

∫
Nn−r(A)\Gn−r(A)

∫
Kn

∫
[Nn−r]

∫
[Nn+m−r]

(R(k)f)Pr

(hr
uhn−r

)
,

hr
u′

(
hn−r

1m

)
 δPr

(
hr

hn−r

) s−n+r
2n−2r+m

|dethn−r|
(2n+m)s+rm

2n−2r+m du′dudkdhn−rdhr.

(4.5.2)
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Fix N sufficiently large. By (2.3.4), for Re(s) ≫ 0, we have [MPr ] ∋ m 7→ fPr(m)δPr(m)s ∈
L2
N,χMPr

([MPr ])∞. We write an element of [MPr ] as (hr, x, h
′
r, y) ∈ [Gr] × [Gn−r] × [Gr] ×

[Gn+m−r]. By Lemma 2.5.3, Lemma 2.5.4 and the definition of Rankin-Selberg regular, for

any (x, y) ∈ [Gn−r] × [Gn+m−r], (hr, h
′
r) 7→ fPr(hr, x, h

′
r, y)δPr(hr, x, h

′
r, y)s lies in sum of

L2
N,χ([Gr × Gr])∞, where χ = (χr, χ

′
r) with χr ̸= χ∨

r . Therefore, the integration of (4.5.2)

over [Gr] already vanishes. This finishes the proof.

It remains to prove Lemma 4.5.2. We use the notation from Lemma 2.3.5. Let l denote

the map

(u, u′) ∈ NPr 7→ −
n−1∑
i=r+1

ui,i+1 +

m+n−1∑
i=r+1

u′i,i+1,

when r = n− 1 or n, the first term is understood as 0. Then (fNG
n+1,ψ

′
r
)UG

r+1
= fNPr ,ψl

. Using

Iwasawa decomposition, the integral defining Fr(s, f) is bounded by∫
[Gr]

∫
[G1]n−r

∫
Kn

∣∣∣∣∣fNPr ,ψl

((
h

t

)
k

)∣∣∣∣∣ δQr

(
h

t

)−1

dhdtdk. (4.5.3)

Note that there exists N0 > 0 such that∥∥∥∥∥∥Ad∗

(
h

t

)−1

l

∥∥∥∥∥∥≫
n−r∏
i=1

∥ti∥N0
A .

By Lemma 2.3.5, the integral (4.5.3) is essentially bounded by∫
[Gr]

∫
[G1]n−r

n−r∏
i=1

∥ti∥−N1∥h∥−NGr
∥t∥−NGr

1
δPr

(
h

t

)−cN

δQr

(
h

t

)−1

|deth|s|det t|sdtdh,

whose convergence follows from the same argument of §4.4.3. The convergence of F ′
r(s, f) is

also similar to the argument in §4.4.3 and is left to the reader. □

4.6. A twisted version. In §4.6, we discuss a twisted version of results in §3.1 and §4.1. We

fix integers n ≥ 0 and m ≥ 1. Note that, in contrast with earlier part of §4, we allow m = 1.

4.6.1. A twisted version. Let wℓ =

(
1

. .
.

1

)
∈ Gn be the longest Weyl group element. For

f ∈ S([G]), we define the twisted Rankin-Selberg period as

P̃RS(f,Φ) :=

∫
[Gn]

fNG
n+1,ψ

′
n+1

(
wℓ

tg−1wℓ,

(
g

1m

))
dg.

Let ψN denote the character

ψN (u, u′) = ψ

n−1∑
i=1

ui,i+1 +
m+n−1∑
j=1

u′j,j+1


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and for f ∈ T ([G]), its Whittaker function is defined by

Wf (g) =

∫
[N ]

f(ug)ψN (u)−1du.

For f ∈ T ([G]) and s ∈ C, we put the twisted Zeta integral

Z̃RS(s, f) =

∫
Nn(A)\Gn(A)

Wf

(
wℓ

tg−1wℓ,

(
g

1m

))
|det g|sdg,

provided by the integral is absolutely convergent.

Let χ ∈ X(G). Assume that χ is represented by (M,π) where M and π are as in (4.1.1)

and (4.1.2). We say that χ is twisted Rankin-Selberg regular, if for any 1 ≤ i ≤ s, 1 ≤ j ≤ t,

we have πn,i ̸= πn+m,j . Let X̃RS ⊂ X(G) denote the set of twisted Rankin-Selberg regular

cuspidal datum. We write T
R̃S

([G]) for T
X̃RS

([G]).

The proof of the following corollary is parallel to the proof of Corollary 3.2.4, and we omit

the proof.

Corollary 4.6.1. We have the following statements:

(1) For f ∈ T ([G]), there exists C > 0 such that the integral defining Z̃RS(s, f) is conver-

gent for Re(s) > C and defines a holomorphic function on H>C .
(2) The linear functional P̃RS on S

R̃S
([G]) extends (uniquely) by continuity to a continuous

linear functional P̃RS on T
R̃S

([G]).

(3) For any f ∈ T
R̃S

([G]), the zeta integral Z(·, f) extends to an entire function. And we

have

P̃RS(f) = Z̃RS(0, f)

(4) For any s ∈ C, the functional Z̃(s, ·) on T
R̃S

([G]) is continuous.

By (4.2.4), we see that

(4.6.1) The map Z̃RS(·, ·) : C→ T ′
R̃S

([G]), s 7→ (f 7→ Z̃RS(s, f)) is holomorphic.

4.6.2. Euler decomposition. Let S be a finite set of places of F , let σ = σn ⊠ σn+m be a

generic irreducible representation of G(FS). For W ∈ W(σ, ψN,S), we define local (twisted)

Rankin-Selberg integral of W [JPS83] as

Z̃RS
S (s,W ) :=

∫
Nn(FS)\Gn(FS)

W

(
wℓh

−1wℓ,

(
h

1m

))
|deth|sdh.

The integral defining Z̃RS
S (s,W ) is convergent when Re(s)≫ 0 and has meromorphic contin-

uation to C. Moreover, by [JPS83] and [Jac09], the quotient

Z̃RS
S (s,W )

LS(s+ m
2 , σ

∨
n × σn+m)

is entire.
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Let P = Pn × Pn+m ⊂ G be a standard parabolic subgroup and let π = πn ⊠ πn+m be a

cuspidal automorphic representation of MP . Assume that (MP , π) gives a twisted Rankin-

Selberg regular cuspidal data χ. Let Π = Ind
G(A)
P (A) π = Πn ⊠ Πn+m.

For future use in §6.4, we consider a section φ ∈ A
P,πn|·|

n+m
2 ⊠πn+m|·|−

n
2

. We write E(φ)(g) =

E(g, φ, 0) for the Eisenstein series of φ. Note that E(φ) ∈ T
R̃S

([G]).

Let S be a sufficiently large set of places of F , that we assume to contain Archimedean

places as well as the places where Π, ψ or φ is ramified. We then have a decomposition

WE(φ) = WE(φ),SW
S
E(φ) such that W S

E(φ)(1) = 1 and is fixed by KS.

Note that WE(φ),S ∈ W(ΠS, ψN,S). By the unramified computation for the Rankin-Selberg

integral, we have

Z̃RS(s, E(φ)) = (∆S,∗
Gn

)−1Z̃RS
S (s,WE(φ),S)L

S(s− n,Π∨
n ×Πn+m) (4.6.2)

5. Periods detecting (n, n)-Eisenstein series

5.1. Statements of the main results.

5.1.1. Notations. In §5, we will use the following notations. Let n ≥ 1 be a fixed integer, and

let G = G2n. Let H = Sp2n, regarded as a subgroup of G. Let N denote the upper triangular

unipotent subgroup of G and let NH := N ∩H.

Let Qn be the standard parabolic subgroup of G with Levi component Gn×Gn. Note that

QHn := Qn ∩H is the Siegel parabolic subgroup of H. The Levi component of QHn consists of

elements of the form (
J tg−1J

g

)
, g ∈ Gn.

For 0 ≤ r ≤ n, we write Pr for the standard parabolic subgroup whose Levi component is

Gn−r1 ×G2r ×Gn−r1 . Let Nr denote the unipotent radical of Pr. We denote by PHr = Pr ∩H.

Note that P0 is the Borel subgroup of G and PH0 is the Borel subgroup of H.

Let P2r denote the mirabolic subgroup of GL2r, it consists of elements of GL2r with last row

(0, · · · , 0, 1). Let PH2r := P2r∩Sp2r. We regard Sp2r as the subgroup

1n−r

h

1n−r

 of H,

where h ∈ Sp2r. We hence regard PH2r as a subgroup of H via the embedding PH2r ⊂ Sp2r ⊂ H.

Let ∆ denote the BZSV quadruple [MWZ24] (G,H, std⊕ std∨, 1). Let ψn denote the de-

generate character on N(A) defined by

ψn(u) = ψ

 ∑
1≤i≤2n−1

i ̸=n

ui,i+1

 .
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For 1 ≤ r ≤ n, we write ψNr for the restriction of ψn to Nr(A). For f ∈ T ([G]), we put

fNr,ψ(g) :=

∫
[Nr]

f(ug)ψ−1
Nr

(u)du.

We write KH for the standard maximal compact subgroup of H(A). For any semi-standard

parabolic subgroup Q of H, we have the Iwasawa decomposition H(A) = Q(A)KH .

5.1.2. The period. For f ∈ S([G]) and Φ ∈ S(A2n), we define a bilinear map S([G]) ×
S(A2n)→ C by

P(f,Φ) =

∫
[H]

f(h)Θ(h,Φ)dh.

By Lemma 2.3.3, the integral defining P is absolutely convergent and defines a continuous

bilinear map on S([G])× S(A2n).

5.1.3. Zeta integral. For every f ∈ T ([G]), we associate the following degenerate Whittaker

coefficient

Vf (g) =

∫
[N ]

f(ug)ψn(u)−1du.

For f ∈ T ([G]) and Φ ∈ S(A2n) and λ ∈ a∗Qn,C, we set

Z(λ, f,Φ) =

∫
NH(A)\H(A)

Vf (h)Φ(e2nh)e⟨λ,HQn (h)⟩dh

provided by the expression converges absolutely. Denote the unique element in ∆Qn by α.

We define sλ := −⟨λ, α∨⟩. Therefore sλ has the property

exp

(
⟨λ,HQn

(
J tg−1J

g

)
⟩

)
= |det g|sλ ,

thus inducing a linear map a∗Qn,C → C, λ 7→ sλ.

The following two lemmas provide the convergence of zeta integral

Lemma 5.1.1. Let N ≥ 0. There exists cN > 0 such that

(1) For every f ∈ TN ([G]) and Φ ∈ S(A2n), the expression defining Z(λ, f,Φ) converges

absolutely when Re(sλ) > cN and defines a holomorphic function of λ on the region

Re(sλ) > cN ;

(2) For every Φ ∈ S(A2n) and λ ∈ a∗Qn,C with Re(sλ) > cN , the functional f ∈ TN ([G]) 7→
Z(λ, f,Φ) is continuous.

Lemma 5.1.2. We have the following statements

(1) For every f ∈ S([G]), Φ ∈ S(A2n) and λ ∈ a∗Qn,C, the expression defining Z(λ, f,Φ)

converges absolutely and defines an entire function in λ;

(2) For every λ ∈ a∗Qn,C and Φ ∈ S(A2n), the functional f ∈ S([G]) 7→ Z(λ, f,Φ) is

continuous;

Lemma 5.1.1 and Lemma 5.1.2 will be proved in §5.2.2 and §5.2.4 respectively.
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5.1.4. ∆-regular cuspidal datum. Let χ ∈ X(G) be a cuspidal data, let χMQn be the preimage

of χ in X(MQn) = X(GLn×GLn). We say that χ is ∆-regular, if for any χ′ ∈ χMQn is twisted

Rankin-Selberg regular in the sense of §3.2.5. The reader can check that this definition is the

same as the one given in (1.2.3). We remark that ∆ here stands for the quadruple defined in

§5.1.1. Note that any regular cuspidal data is ∆-regular.

Let X∆ ⊂ X(G) denote the set of ∆-regular cuspidal data. We write S∆([G]) (resp. T∆([G]))

for SX∆
([G]) (resp. TX∆

([G])).

5.1.5. Main results. For Φ ∈ S(A2n), we denote by Φ♭ ∈ S(An) the restriction of Φ to {0}×An.

Theorem 5.1.3. We have the following statements

(1) For any Φ ∈ S(A2n), the restriction of P(·,Φ) to S∆([G]) extends (uniquely) by con-

tinuity to a functional P∗ on T∆([G]).

(2) For any f ∈ T∆([G]) and Φ ∈ S(A2n), the map λ 7→ Z(λ, f,Φ) extends to an entire

function in λ ∈ a∗Qn,C. Indeed, for any k ∈ KH , (R(k)f)Qn |[Gn×Gn] ∈ TR̃S
([Gn×Gn]),

and we have

Z(λ, f,Φ) =

∫
KH

Z̃RS(sλ + n+
1

2
, (R(k)f)Qn , (R(k)Φ)♭)dk, (5.1.1)

here (R(k)f)Qn means (R(k)f)Qn |[Gn×Gn].

(3) We have

P∗(f,Φ) = Z(0, f,Φ).

(4) The bilinear map T∆([G])× S(A2n)→ C, (f,Φ) 7→ P∗(f,Φ) is continuous.

5.2. Convergence of Zeta integrals.

5.2.1. More zeta integrals. For f ∈ S([G]) and Φ ∈ S(A2n) and 0 ≤ r ≤ n. We define

Zr(f,Φ) =

∫
Nr(A)PH

2r(F )\H(A)
fNr,ψ(h)dh.

Note that when r = 0, Zr(f,Φ) = Z(0, f,Φ).

Lemma 5.2.1. For every 0 ≤ r ≤ n and f ∈ S([G]) and Φ ∈ S(A2n), the integral defining

Zr(f,Φ) converges absolutely.

5.2.2. Proof of Lemma 5.1.1.

Proof. By the Iwasawa decomposition H(A) = PH0 (A)KH , we need to show the existence of

cN > 0 such that∫
KH

∫
(A×)n

|Vf (D(a1, · · · , an)k)|
∣∣Φ(a−1

1 e2nk)
∣∣ δPH

0
(D(a1, · · · , an))−1

n∏
i=1

|ai|−Re(s)da1 · · · dandk

(5.2.1)
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when Re(s) > cN . Where

D(a1, · · · , an) = diag(a1, · · · , an, a−1
n , · · · , a−1

1 ).

The modular function is given by

δPH
0

(D(a1, · · · , an)) =
n∏
i=1

|ai|2n−2i+2.

We apply Lemma 2.3.5 (2), then for every N1 > 0, we have

|Vf (D(a1, · · · , an)k)| ≪
n−1∏
i=1

∥aia−1
i+1∥

−N1
A

n∏
i=1

∥ai∥2NG1

for (k, a1, · · · , an) ∈ KH × (A×)n. Note for every N1 > 0, we have |Φ(a−1
1 e2nk)| ≪ ∥a−1

1 ∥
−N1
A

for (k, a1) ∈ KH × A×. Note for every N2 > 0, there exists N1 > 0 such that

n−1∏
i=1

∥aia−1
i+1∥

−N1
A ∥a−1

1 ∥
−N1
A ≪

n∏
i=1

∥a−1
i ∥

−N2
A .

Then for every N2 > 0, (5.2.1) is essentially bounded by

n∏
i=1

∫
A×
∥ai∥2NG1

∥a−1
i ∥

−N2
A |ai|−Re(s)−(2n−2i+2)dai (5.2.2)

Since there exists M > 0 such that ∥ai∥G1 ≪ max{|ai|M , |ai|−M}, the convergence of (5.2.2)

follows from Corollary 2.2.5. □

5.2.3. Proof of Lemma 5.2.1.

Proof. We assume that r > 0, the case r = 0 will be covered in Lemma 5.1.2. By the Iwasawa

decomposition H(A) = PHr (A)KH , we need to show the convergence of∫
KH

∫
(A×)n−r

∫
PH
2r(F )\ Sp2r(A)

|fNr,ψ(D(a1, · · · , an−r, h)k)| |Φ(a−1
1 e2nk)|

δPH
r

(D(a1, · · · , an−r, h))−1dhda1 · · · dan−rdk,
(5.2.3)

where

D(a1, · · · , an−r, h) = diag(a1, · · · , an−r, h, a−1
n−r, · · · , a−1

1 ).

and the modular function δPH
r

is given by

δPH
r

(D(a1, · · · , an−r, h)) =
n−r∏
i=1

|ai|2n+2−2i.

We now apply Lemma 2.3.5 (1). For this, we note ψNr = ψ ◦ l, where l : Nr → Ga sends

u ∈ Nr to u1,2 + · · ·un−r,n−r+1 + un+r,n+r+1 + · · ·+ u2n−1,2n. One can check that

n−r−1∏
i=1

∥aia−1
i+1∥A∥an−re2rh∥A2r ≪ ∥Ad∗(D(a1, · · · , an−r, h)−1)l∥VPr ,A.
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Therefore, by 2.3.5 (1), we can find c > 0 such that for every N1, N2 > 0 we have

|fNr,ψ(D(a1, · · · , an−r, h)k)|

≪
n−r−1∏
i=1

∥aia−1
i+1∥

−N1
A ∥an−re2rh∥−N1

A2r

n−r∏
i=1

∥ai∥−2N2
G1

∥h∥−N2
G2r

δPr(D(a1, · · · , an−r, h))−cN2

for (k, a1, · · · , an−r, h) ∈ KH × (A×)r × Sp2r(A). The modular function is

δPr(D(a1, · · · , an−r, h)) =

r∏
i=1

|ai|4n−4i+2.

On the other hand, for every N1 > 0, we have

|(R(k)Φ)(a−1
1 e2n)| ≪ ∥a−1

1 ∥
−N1
A , (k, a1) ∈ KH × A×.

One can check for every N3 > 0, there exists N1 > 0 such that

n−r−1∏
i=1

∥aia−1
i+1∥

−N1
A ∥an−re2rh∥−N1

A2r
∥a−1

1 ∥
−N1
A ≪

n−r∏
i=1

∥a−1
i ∥

−N3
A ∥e2rh∥−N3

A2r
.

Then we deduce the existence of c > 0 such that for every N3, N2 > 0, (5.2.3) is essentially

bounded by the product of ∫
PH
2r(F )\Sp2r(A)

∥h∥−N2
G2r
∥e2rh∥−N3

A2r
dh (5.2.4)

and
n−r∏
i=1

∫
A×
∥a−1

i ∥
−N3
A |ai|−(4n−4i+2)cN2−(2n−2i+2)dai (5.2.5)

By Lemma 2.3.3, there exists N0 > 0, such that for every N3 ≥ N0, we have∫
PH
2r(F )\Sp2r(A)

∥h∥−N2
G2r
∥e2rh∥−N3

A2r
dh

=

∫
[Sp2r]

∥h∥−N2
G2r

 ∑
v∈F2r\{0}

∥vh∥−N3
A2r

 dh≪
∫
[Sp2r]

∥h∥N0−N2
Sp2r

dh

Therefore, by Corollary 2.2.5, the integral (5.2.5) and (5.2.4) are absolutely convergent when

N3 ≫ N2 ≫ 0. □

5.2.4. Proof of Lemma 5.1.2.

Proof. By the same argument of the proof of Lemma 5.2.1, the integral defining Z(λ, f,Φ) is

bounded by
n∏
i=1

∫
A×
∥a−1

i ∥
−N3
A |ai|−(4n−4i+2)cN2−(2n−2i+2+Re(sλ)),

which is absolutely convergent when N3 ≫ N2 ≫ max{0,Re(sλ)} by Corollary 2.2.5. □
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5.3. Unfolding.

5.3.1. Main result. In §5.3, we prove the following proposition.

Proposition 5.3.1. For any f ∈ S∆([G]) and Φ ∈ S(A2n), we have

P(f,Φ) = Z(0, f,Φ)

5.3.2. A result of Offen. We say a cuspidal data χ ∈ X(G) is even, if χ can be represented by

(M,π), where

M = GLn1 ×GLn1 × · · · ×GLnk
×GLnk

and

π = π1 ⊠ π1 ⊠ · · ·⊠ πk ⊠ πk

according to this decomposition. We denote by Xeven the set of even cuspidal datum, and

denote its complement by Xceven.

Theorem 5.3.2 (Offen). The symplectic period is vanishing on SXc
even

([G]). That is, for any

f ∈ SXc
even

([G]), ∫
[H]

f(h)dh = 0.

Proof. It is proved in [Off06, Proposition 6.2, Theorem 6.3] (see also [LO18, §7.1]) that if

χ ∈ X(G) is not even and f ∈ Oχ is a pseudo-Eisenstein series, then
∫
[H] f(h)dh = 0. By

Lemma 2.5.2, for any f ∈ Sχ([G]), we have
∫
[H] f(h)dh = 0.

Finally, for any f ∈ SXc
even

([G]), by Theorem 2.5.1, f can be written as
∑

χ∈Xc
even

fχ, where

fχ ∈ S([G]) and the sum is absolutely convergent in S([G]). The theorem follows. □

Corollary 5.3.3. Let a ≥ 2b be integers and χ ∈ X(Ga). Let P = MN be a standard parabolic

subgroup of Ga such that G2b is a factor of its Levi component M . For χ′ ∈ X(MP ), denote

by χ′
2b ∈ X(G2b) the component of χ′ at G2b. Suppose that for any χ′ ∈ χM , χ′

2b is not even.

Regard Sp2b ⊂ G2b as a subgroup of M , then for any f ∈ Sχ([Ga]), we have∫
[Sp2b]

fP (h)dh = 0.

Proof. Note that δP is trivial on Sp2b, it follows from Lemma 2.3.1 that the restriction of fP

to [Sp2b] belongs to S([Sp2b]). The integral hence converges absolutely. By Lemma 2.5.3, we

have fP ∈ Tχ([Ga]P ). Let κ ∈ C∞
c (aP ) be a compactly supported smooth function on aP with

κ(0) = 1. By (2.3.3) and Lemma 2.5.6, we conclude that

(κ ◦HP ) · fP ∈ Tχ([Ga]P ) ∩ S([Ga]P ) = Sχ([Ga]P ).
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By Lemma 2.5.4 and Lemma 2.5.5, the restriction of (κ ◦ HP ) · fP to [G2b] belongs to∑
χ′∈χM Sχ′

2b
([G2b]). It follows from Theorem 5.3.2 that∫

[Sp2b]
fP (h)dh =

∫
[Sp2b]

(κ ◦HP )(h)fP (h)dh = 0.

□

5.3.3. Proof of Proposition 5.3.1. Proposition 5.3.1 is implied by the following Lemma

Lemma 5.3.4. For any f ∈ S∆([G]) and Φ ∈ S(A2n), we have

Z0(f,Φ) = Z1(f,Φ) = · · · = Zn(f,Φ) = P(f,Φ)

Proof. We show that Zr(f,Φ) = Zr+1(f,Φ) for 0 ≤ r ≤ n−1, the proof of Zn(f,Φ) = P(f,Φ)

is similar and is left to the reader.

Let r ≥ 1, we denote by Ur the unipotent radical of the parabolic subgroup of GL2r with

Levi component G1×G2r−2×G1, which we regard Ur as the subgroup

1n−r

u

1n−r

 , u ∈

Ur of G. Let UHr := Ur ∩ H. Note that UHr is a normal subgroup of Ur. By an abuse of

notation, we write ψ for the character u 7→ ψ(u12 + u2r−1,2r) of Ur(A).

By Fourier inversion on the compact abelian group Ur+1(A)/Ur+1(F )UHr+1(A), we have∫
[UH

r+1]
fNr+1,ψ(uh)dh = (fNr+1,ψ)Ur+1 +

∑
γ∈PH

2r(F )\ Sp2r(F )

(fNr+1,ψ)Ur+1,ψ

for all h ∈ H(A), where we have set

(fNr+1,ψ)Ur(g) =

∫
[Ur]

fNr+1,ψ(ug)du,

(fNr+1,ψ)Ur,ψ(g) =

∫
[Ur]

fNr+1,ψ(ug)ψ(u)du = fNr,ψ(g).

Therefore, we formally have

Zr(f,Φ) = Zr+1(f,Φ) + Fr(f,Φ) (5.3.1)

where we have set

Fr(f,Φ) =

∫
Sp2r(F )NH

r (A)\H(A)
(fNr+1,ψ)Ur(h)Φ(e2nh)dh.

To verify (5.3.1), we need to show

Lemma 5.3.5. For every 0 ≤ r ≤ n − 1, f ∈ S([G]) and Φ ∈ S(A2n), the integral defining

Fr(f,Φ) converges absolutely.
52



Proof of Lemma 5.3.5. By the same arguments as the proof of Lemma 5.2.1, there exists c > 0

such that for every N,N2 > 0, the integral defining Fr(f,Φ) is essentially bounded by the

product of ∫
[Sp2r]

∥h∥−N2
G2r

dh

and
n−r∏
i=1

∫
A×
∥ai∥−2N2

G1
∥a−1

i ∥
−N
A |ai|−(4n−4i+2)cN2−(2n−2i+2)dai.

We can take N ≫ N2 ≫ 0 such that these integrals converge. □

Let Rr be the standard parabolic subgroup of G with Levi component Gn−r×G2r×Gn−r.
Let Vk denote the upper triangular unipotent subgroup of Gk. Then

(fNr+1,ψ)Ur(g) =

∫
[Vn−r]

∫
[Vn−r]

fRr


u1 12r

u2

 g

ψ−1(u1)ψ
−1(u2)du1du2.

Let RHr := Rr ∩ H. Using the Iwasawa decomposition H(A) = RHr (A)KH , we can write

Fr(f,Φ) as

Fr(f,Φ) =

∫
Vn−r(A)\Gn−r(A)

∫
[Sp2r]

∫
K

∫
[Vn−r]

∫
[Vn−r]

fRr


u1g h

u2Jn−r
tg−1Jn−r

 k



δRH
r

g h

Jn−r
tg−1Jn−r


−1

du1du2dkdhdg.

Therefore the vanishing is implied by

∫
[Sp2r]

fRr

1n−r

h

1n−r

dh (5.3.2)

vanishes for any f ∈ S∆([G]). It suffices to prove that for any ∆-regular cuspidal data and

any f ∈ Sχ([G]), the integral (5.3.2) vanishes. However, one can check directly that for any

χ′ = (χ1, χ2, χ3) ∈ χMPr ⊂ X(Gn−r × G2r × Gn−r), χ2 is not even. Therefore, the integral

vanishes by Corollary 5.3.3. □

5.4. Proof of Theorem 5.1.3. Let X
MQn
∆ denote the preimage of X∆ in X(MQn). By the

definition of ∆-regularity, we have X
MQn
∆ ⊂ X

R̃S
(MQn) (indeed it is easy to see that this is an

equality).
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Let f ∈ T∆([G]) and Φ ∈ S(A2n), By the Iwasawa decomposition H(A) = QHn (A)KH , when

Z(λ, f,Φ) is absolutely convergent, we have

Z(λ, f,Φ) =

∫
KH

∫
Nn(A)\Gn(A)

VR(k)f

(
J tg−1J

g

)
Φ(e2ng)|det g|sλ+n+1dgdk. (5.4.1)

From the definition of the degenerate Whittaker coefficient, we have

Vf

(
g′

g

)
= W

MQn
fQn

(
g′

g

)
, g, g′ ∈ Gn(A)

Then we can write

Z(λ, f,Φ) =

∫
KH

Z̃RS(sλ + n+
1

2
, (R(k)Φ)♭, (R(k)f)Qn)dk, Re(sλ)≫ 0.

Then it follows from Corollary 3.2.4 that Z̃RS(sλ +n+ 1
2 , (R(k)Φ)♭, (R(k)f)Qn) extends to an

entire function of sλ. Applying Lemma 2.7.1 (2) with

W = S(An), V = T
R̃S

([Gn ×Gn]), X = KH × S(A2n)× T∆([G]),

the holomorphic map

s ∈ C 7→ Z̃RS(s+ n+
1

2
, ·, ·) ∈ Bil(S(An), T

R̃S
([Gn ×Gn])),

and continuous maps

(s, k, f,Φ) ∈ C×KH × S(A2n)× T∆([G]) 7→ (R(k)Φ)♭ ∈ S(An),

(s, k, f,Φ) ∈ C×KH × S(A2n)× T∆([G]) 7→ (R(k)f)Qn ∈ TR̃S
([Gn ×Gn])

we deduce that the map

(s, k, f,Φ) ∈ C×KH × S(A2n)× T∆([G]) 7→ Z̃RS(s+ n+
1

2
, (R(k)Φ)♭, (R(k)f)Qn) ∈ C

is continuous and holomorphic in the first variable. Then it follows from Lemma 2.7.2 that

the integral ∫
KH

Z̃RS(sλ + n+
1

2
, (R(k)Φ)♭, (R(k)f)Qn)dk

is holomorphic in s ∈ C. Therefore Z(λ, f,Φ) extends to an entire function. This proves (2).

Lemma 2.7.2 also implies Z(0, f,Φ) is continuous in (f,Φ) ∈ T∆([G])× S(A2n). Moreover by

Lemma 5.1.2 and Proposition 5.3.1,

Z(0, f,Φ) = P(f,Φ).

Therefore for Φ ∈ S(A2n), the f 7→ Z(0, f,Φ) provides a continuous extension of P(·,Φ) to

T∆([G]), this proves (1),(3) and (4).

5.5. Periods of ∆-regular Eisenstein series.
54



5.5.1. Local zeta integral. Fix a place v of F , let ΠM = Π ⊠ Π′ be an irreducible generic

representation of MQn(Fv). Recall the space Ind
G(Fv)
Qn(Fv)

W(ΠM , ψv) defined in §2.6.2. For

WM ∈ Ind
G(Fv)
Qn(Fv)

W(ΠM , ψv) and Φ ∈ S(Fv,2n) and λ ∈ a∗Qn,C, we define

Zv(λ,W
M ,Φ) =

∫
NH(Fv)\H(Fv)

WM (h)Φ(e2nh)e⟨λ,HQn (h)⟩dh,

provided by the integral is absolutely convergent.

Lemma 5.5.1. (1) For any WM ∈ Ind
G(Fv)
Qn(Fv)

and Φ ∈ S(Fv,2n), the integral defining

Zv(λ,W
M ,Φ) is absolutely convergent when Re(sλ)≫ 0 and has a meromorphic con-

tinuation to a∗Qn,C.

Proof. Using the Iwasawa decomposition, we can formally write Zv(λ,W
M ,Φ) as

Zv(λ,W
M ,Φ) =

∫
KH,v

∫
Nn(Fv)\Gn(Fv)

R(k)W

(
J tg−1J

g

)
(R(k)Φ)♭(eng)|det g|sλ+n+1dgdk

=

∫
KH,v

Z̃RS
v (sλ + n+

1

2
, (R(k)Φ)♭, R(k)WM |MQn (Fv)).

(5.5.1)

The convergence of the zeta integral hence follows from the convergence of the usual Rankin-

Selberg integral [JPS83], [Jac09].

When v is non-Archimedean, by (5.5.1), Zv(λ,W
M ,Φ) is essentially a finite sum of twisted

Rankin-Selberg integral, hence has meromorphic continuation. We now assume v is Archimedean.

Let O(C) denote the entire function on C with the usual compact-open topology. By [Jac09,

Theorem 2.3], the map

W(|·|
n
2 Π ⊠ |·|−

n
2 Π′, ψ)× S(Fv,n)→ O(C), (W,Φ′) 7→

(
s 7→

Z̃RS
v (s+ n+ 1

2 ,Φ
′,W )

Lv(s+ 1,Π∨ ×Π′)

)
(5.5.2)

is continuous. Therefore, the map

KH,v → O(C) : k 7→
Z̃RS
v (s+ n+ 1

2 , (R(k)Φ)♭, R(k)W )

LS(s+ 1,Π∨ ×Π′)

is continuous. Combining with (5.5.1), the meromorphicity follows from Lemma 2.7.2. □

We finally remark by the same argument, Lemma 5.5.1 still holds if we replace v by a finite

set S of places of F .

5.5.2. Fixed points. Let P = MPNP be a standard parabolic subgroup, we write MP as

Gn1 × · · · × Gnk
. Let π = π1 ⊠ · · · ⊠ πk be a cuspidal unitary automorphic representation

of MP (central character not necessarily trivial on A∞
M ) such that the cuspidal datum χ

represented by (MP , π0) (see §1.2.2) is ∆-regular.
55



We write Fix(π) for the set of permutations σ : {1, 2, · · · , k} → {1, 2, · · · , k} such that

there exists 1 ≤ t ≤ k with:

(1) nσ(1) + · · ·+ nσ(t) = n, nσ(t+1) + · · ·+ nσ(k) = n.

(2) σ(1) < · · · < σ(t) and σ(t+ 1) < · · · < σ(k).

We also introduce the following notations

(1) Pσ the standard parabolic subgroup of G2n+m with MPσ = Gnσ(1)
× · · · ×Gnσ(k)

,

(2) Pσ,n (resp. P ′
σ,n) the standard parabolic subgroup of Gn with Levi subgroup Gnσ(1)

×
· · · ×Gnσ(t)

(resp. Gnσ(t+1)
× · · · ×Gnσ(k)

),

(3) πσ = πσ(1) ⊠ · · ·⊠ πσ(k), which is a cuspidal automorphic representation of MPσ ,

(4) πσ,n = πσ(1) ⊠ · · ·⊠ πσ(t) and π′σ,n = πσ(t+1) ⊠ · · ·⊠ πσ(k).

(5) Πσ,n = Ind
Gn(A)
Pσ,n(A) πσ,n and Π′

σ,n = Ind
Gn+m(A)
Pσ,n+m(A) πσ,n+m.

5.5.3. L-functions. Let σ ∈ Fix(π), we put

L(s, TσX̌) := L(s,Πσ,n ×Π′,∨
σ,n)L(s,Π∨

σ,n ×Π′
σ,n).

5.5.4. Periods of Eisenstein series. Let φ ∈ Π = Ind
G(A)
P (A) π = AP,π and write E(φ)(g) =

E(g, φ, 0) for the Eisenstein series of φ. Then E(φ) ∈ T∆([G]).

Theorem 5.5.2. We have

P(E(φ)) =(∆S,∗
H )−1L(1, π, n̂−P )−1

∑
σ∈Fix(π)

LS(1, TσX̌)LS(1, πσ, n̂
−
Pσ

)ZS(λ,ΦS,Ω
MQn
S (Nπ,S(σ)WM

φ,S)).

Recall the L-function L(s, π, n̂−P defined in (2.4.3).

Proof. By the constant term formula for Eisenstein series, we have

(R(k)E(φ))Qn =
∑

w∈W (P ;Qn)

EQn(M(w)R(k)φ), k ∈ KH .

By Theorem 5.1.3, we can write

P∗(E(φ),Φ) =

∫
KH

Z̃RS(n+
1

2
, (R(k)E(φ))Qn , (R(k)Φ)♭)dk

=
∑

w∈W (P ;Qn)

∫
KH

Z̃RS(n+
1

2
, EQn(M(w)R(k)φ), (R(k)Φ)♭)dk.

(5.5.3)

where the second equality holds because for each w ∈W (P ;Qn) and each k ∈ KH , EQn(M(w)R(k)φ) ∈
T
R̃S

([MQn ]).

Assume that there exists 1 ≤ i < j ≤ k such that π∨i = πj , then by the computation of

Fourier coefficient of Eisenstein series [Sha81, §4], the Whittaker function of EQn(M(w)R(k)φ)|[MQ]

vanishes for any k ∈ KH , therefore P∗(E(φ),Φ) vanishes. Therefore, from now on, we assume

that π∨i ̸= πj for any i ̸= j. In particular, for any finite subset S of places of F , the partial

L-function LS(s, π∨i × πj) is regular (and non-vanishing) at s = 1.
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Let S be a sufficiently large finite set of places of F , which we assume to contain Archimedean

places as well as the places where Π or ψ is ramified. We also assume φ is fixed byKS and Φ can

be written as Φ = ΦSΦ
S, where ΦS is the characteristic function of OS

F,2n and ΦS ∈ S(FS,2n).

Note that there is a bijection between and W (P ;Qn) and Fix(π), where each w corresponds

to the σ such that wMPw
−1 = MP,σ. In the following, we fix an arbitrary w ∈ W (P ;Qn),

and corresponding σ ∈ Fix(π). It’s clear that under this correspondence, one can identify the

representation wπ of wMPw
−1 with the representation πσ of MP,σ.

Note that the restriction of EQn(M(w)R(k)φ) to [MQn ] belongs to |·|
n
2 Πσ,n ⊠ |·|−

n
2 Π′

σ,n,

then it follows from (3.2.5) and (5.5.1) that∫
KH

Z̃RS(n+
1

2
, (R(k)Φ)♭, EQn(M(w)R(k)φ))dk = (∆S,∗

H )−1LS(1,Π∨
σ,n×Π′

σ,n)ZS(0,W
MQn

M(w)E(φ),S,ΦS).

(5.5.4)

By (2.6.3) and (2.6.4), we have

W
MQn

EQn (M(w)φ),S
=

1

LS(1, πσ,n, n̂
−
Pσ,n

)LS(1, π′σ,n, n̂
−
P ′
σ,n

)

L(1, πσ, n̂
−
Pσ

)

L(1, π, n̂−P )
Ω
MQn
S (Nπ,S(w)WMP

φ,S )

=
LS(1,Πσ,n ×Π′,∨

σ,n)

L(1, π, n̂−P )
LS(1, πσ, n̂

−
Pσ

)ΩQn
S (Nπ,S(w)WMP

φ,S )

Therefore we can write the left hand side of (5.5.4) as

(∆S,∗
H )−1

LS(1,Π∨
σ,n ×Π′

σ,n)LS(1,Π∨
σ,n ×Π′

σ,n)

L(1, π, n̂−P )
LS(1, πσ, n̂

−
Pσ

)ZS(0,Ω
Qn
S (Nπ,S(w)WMP

φ,S ),Φ).

This finishes the proof □

6. Periods detecting (n, n+m)-Eisenstein series

6.1. Statement of the main results.

6.1.1. Notations. In §6, fix integers n ≥ 0 and m ≥ 1. Let G = G2n+m and let H = Sp2n. We

regard H as the subgroup

(
h

1

)
, h ∈ H of G. We will study period related to the quadruple

∆ := ∆n,m = (G,H, 0, ιn,m), where ιn,m : SL2 → G is the representation 1n+1 ⊕ Symm−1 of

SL2.

Let N = N2n+m denote the upper triangular unipotent subgroup of G and let NH := N∩H.

For 0 ≤ r ≤ n, let Pr := Pn,mr be the parabolic subgroup of of G whose Levi component

is isomorphic to Gn−r1 ×G2r ×Gn+m−r
1 . Let PHr := Pr ∩H, it is a parabolic subgroup of H

whose unipotent radical is NH
r := Nr ∩H. The Levi component of PHr is Sp2r ×Gn−r1 .
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Let P2r denote the mirabolic subgroup of GL2r, it consists of elements of GL2r with last

row (0, · · · , 0, 1). Let PH2r := P2r ∩Sp2r. We regard Sp2r as the subgroup

1r

h

1r

 of H,

where h ∈ Sp2r. We hence regard PH2r as a subgroup of H via the embedding PH2r ⊂ Sp2r ⊂ H.

Let ψn denote the degenerate character

N(A) ∋ u 7→ ψ

 ∑
1≤i≤n+m−1

i ̸=n

ui,i+1


of N(A) which is trivial on N(F ).

We also denote by Nn+1 the unipotent radical of the parabolic Pn+1 of G whose Levi

component is Gn+1 ×Gn+m−1
1 .

For 1 ≤ r ≤ n + 1, We write ψNr for the restriction of ψn to Nr(A). For f ∈ T ([G]), we

put

fNr,ψ(g) :=

∫
[Nr]

f(ug)ψ−1
Nr

(u)du.

6.1.2. The period. For f ∈ S([G]), we define the period P := P∆ on S([G]) by

P(f) =

∫
[H]

fNn+1,ψ(h)dh.

By Lemma 2.5.3, the integral ∫
[H]

∫
[Nn+1]

|f(nh)|dndh

is absolutely convergent. Hence the integral defining P(f) is absolutely convergent.

6.1.3. Zeta integral. For f ∈ T ([G]), we associate the degenerate Whittaker coefficient

Vf (g) =

∫
[N ]

f(ug)ψ−1
n (u)du.

Note that Vf (g) = fN0,ψ(g). Let Qn denote the parabolic subgroup of G of type (n, n+m).

For f ∈ T ([G]), and for λ ∈ a∗Qn,C, we set

Z(λ, f) =

∫
NH(A)\H(A)

Vf (h)e⟨λ,HQn (h)⟩dh,

provided by the integral is absolutely convergent. Note that Z(λ, f) only depends on sλ :=

⟨λ, α∨⟩ ∈ C.

Lemma 6.1.1. We have the following statements:

(1) for any λ ∈ a∗Qn,C, the integral defining Z(λ, f) is absolutely convergent, and it defines

an entire function on a∗Qn,C,

(2) for any λ ∈ a∗Qn,C, the map f 7→ Z(λ, f) is continuous on S([G]).
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Lemma 6.1.2. Let N > 0, then there exists cN > 0 such that

(1) The integral defining Z(λ, f) is absolutely convergent when f ∈ TN ([G]) and Re(sλ) >

cN , and defines a holomorphic function of λ on the region Re(sλ) > cN .

(2) For fix λ such that Re(sλ) > cN . The map TN ([G]) ∋ f 7→ Z(λ, f) ∈ C is continuous.

The proof of the two lemmas is parallel to proofs given in §5.2, so we leave it to the readers.

6.1.4. ∆-regular cuspidal datum. Let χ ∈ X(G) be a cuspidal data, let χMQn be the preimage

of χ in X(MQn) = X(GLn×GLn+m). We say that χ is ∆-regular, if for any χ′ ∈ χMQn is

twisted Rankin-Selberg regular in the sense of 4.6.1. We remark that ∆ here stands for the

quadruple defined in §6.1.1. Note that any regular cuspidal data is ∆-regular.

Let X∆ ⊂ X(G) denote the set of ∆-regular cuspidal data. We write S∆([G]) (resp. T∆([G]))

for SX∆
([G]) (resp. TX∆

([G])).

6.1.5. Main results.

Theorem 6.1.3. We have the following statements

(1) The restriction of P to S∆([G]) extends (uniquely) by continuity to a functional P∗

on T∆([G]).

(2) For any f ∈ T∆([G]), the map λ 7→ Z(λ, f) extends to an entire function in λ ∈ a∗Qn,C.

Indeed, for any k ∈ KH , (R(k)f)Qn |[Gn×Gn+m] ∈ TR̃S
([Gn ×Gn+m]), and we have

Z(λ, f) =

∫
KH

Z̃RS(sλ + n+ 1, (R(k)f)Qn)dk, (6.1.1)

here (R(k)f)Qn means (R(k)f)Qn |[Gn×Gn+m]

(3) We have

P∗(f) = Z(0, f).

The proof of the Proposition will be given in §6.3.

6.2. Unfolding. In §6.2, we show the following result:

Proposition 6.2.1. For any f ∈ S∆([G]), we have

P(f) = Z(0, f).

6.2.1. More zeta integrals. For f ∈ S([G]), we put

Zr(f) =

∫
NH

r (A)PH
2r(F )\H(A)

fNr.ψr(h)dh.

Note that Z0(f) = Z(0, f).

Proposition 6.2.2. For any f ∈ S([G]), the integral defining Zr(f) is absolutely convergent.

Proof. The proof of the proposition follows the same line of the proof of Lemma 5.2.1, and

we omit the proof. □
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6.2.2. Proposition 6.2.1 will directly follow from the following lemma.

Lemma 6.2.3. For any f ∈ S∆([G]), we have

Z0(f) = Z1(f) = · · · = Zn(f) = P(f).

Proof. It suffices to prove Zn(f) = P(f) and Zr(f) = Zr+1(f) for any 0 ≤ r ≤ n − 1. We

prove the latter, and the former one follows from a similar argument.

Let r ≥ 1, we denote by Ur the unipotent radical of the parabolic subgroup of GL2r with

Levi componentG1×G2r−2×G1, which we regard Ur as the subgroup

1n−r

u

1n+m−r

 , u ∈

Ur of G. Let UHr := Ur ∩ H. By an abuse of notation, we write ψ for the character

u 7→ ψ(u12 + u2r−1,2r) of Ur(A).

Using Fourier analysis on the compact abelian group Ur+1(A)/UHr+1(A)Ur+1(F ), we can

write ∫
[UH

r+1]
fNr+1,ψ(uh)dh = (fNr+1,ψ)Ur+1 +

∑
γ∈PH

2r(F )\H2r(F )

(fNr+1,ψ)Ur+1,ψ.

where

(fNr+1,ψ)Ur(g) =

∫
[Ur]

fNr+1,ψ(ug)du,

(fNr+1,ψ)Ur,ψ(g) =

∫
[Ur]

fNr+1,ψ(ug)ψ(u)du = fNr,ψ(g).

Therefore, we formally have

Zr+1(f) = Zr(f) + Fr(f), (6.2.1)

where

Fr(f) =

∫
Sp2r(F )Nr(A)\H(A)

(fNr+1,ψ)Ur(h)dh.

To verify (6.2.1), we need to show that the integral defining Fr(f) is absolutely convergent.

The proof follows the same line of the proof of Lemma 5.3.5, and we omit the proof. Therefore,

we are reduced to show that for 0 ≤ r ≤ n− 1, we have Fr(f) = 0.

Let Rr denote the parabolic subgroup of G with Levi component Gn−r×G2r×Gn+m−r. Vk

denote the upper triangular unipotent subgroup of Gk. Write RHr := Rr ∩H. Using Iwasawa
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decomposition H(A) = RHr (A)KH , we can write the integral defining Fr(f) as

Fr(f) =

∫
Vn−r(A)\Gn−r(A)

∫
[Sp2r]

∫
K

∫
[Vn−r]

∫
[Vn+m−r]

fRr

.

u1g.

h

u2

(
Jn−r

tg−1Jn−r

1m

)
 k



δ−1
RH

r

.g h

Jn−r
tg−1Jn−r


−1

du1du2dkdhdg.

Therefore, the vanishing of Fr(f) is implied by

∫
[Sp2r]

fRr

1n−r

h

1n+m−r

 dh (6.2.2)

vanishes for any f ∈ S∆([G]). This follows from Corollary 5.3.3. □

6.3. Proof of Theorem 6.1.3. Let X
MQn
∆ denote the preimage of X∆ in X(MQn), then we

have X
MQn
∆ ⊂ X

R̃S
(MQn)

Therefore, it follows from Lemma 2.5.3, for any k ∈ KH and f ∈ T∆([G]), we have

R(k)f |[MQn ]
∈ T

R̃S
([MQn ]).

Using Iwasawa decomposition as in (5.4.1), we see that for any f ∈ T∆([G]), the equality

Z(λ, f) =

∫
KH

Z̃RS(sλ + n+ 1, ((R(k)f)Qn)|[MQn ]
)dk (6.3.1)

holds when Re(sλ)≫ 1.

By Corollary 4.6.1, for f ′ ∈ T
R̃S

([G]), Z̃RS(s, f ′) has holomorphic continuation to s ∈ C and

is continuous in f ′. Therefore, Z̃RS(sλ +n+ 1, (R(k)f)Qn)|[MQn ]
is defined for any λ ∈ a∗Qn,C.

We argue as in §5.4 that the right hand side of (6.3.1) is holomorphic in λ, and for any

λ ∈ a∗Qn,C, f 7→ Z(λ, f) is continuous in f ∈ T∆([G]). Therefore (2) is proved.

By Proposition 6.2.1, the functional Z(0, ·) on T∆([G]) coincides with P on the dense

subspace S∆([G]). Therefore f 7→ Z(0, f) provides an extension of P to T∆([G]), (1) and (3)

then follow.

6.4. Periods of ∆-regular Eisenstein series.

6.4.1. Local zeta integral. Fix a place v of F , let ΠM = Πn ⊠ Πn+m be an irreducible generic

representation of MQn(Fv). For WM ∈ Ind
G(Fv)
Qn(Fv)

W(ΠM , ψv) and λ ∈ a∗Qn,C, we define

Zv(λ,W
M ) =

∫
NH(Fv)\H(Fv)

WM (h)e⟨λ,HQn (h)⟩dh,

provided by the integral is absolutely convergent.
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Lemma 6.4.1. For any WM ∈ Ind
G(Fv)
Qn(Fv)

, the integral defining Zv(λ,W
M ) is absolutely

convergent when Res(sλ)≫ 0 and has a meromorphic continuation to a∗Qn,C.

We omit the proof which is parallel to the proof of Lemma 5.5.1. By Iwasawa decomposition,

we can write

Zv(λ,W
M ) =

∫
KH

Z̃RS
v (sλ + n+ 1, (R(k)WM )|MQn (Fv)) (6.4.1)

6.4.2. Fixed points. Let P = MPNP be a standard parabolic subgroup, we write MP as

Gn1 × · · · × Gnk
. Let π = π1 ⊠ · · · ⊠ πk be a cuspidal unitary automorphic representation

of MP (central character not necessarily trivial on A∞
M ) such that the cuspidal datum χ

represented by (MP , π0) is ∆-regular.

Recall the set Fix(π) defined in 1.2.3.

(1) Pσ the standard parabolic subgroup of G2n+m with MPσ = Gnσ(1)
× · · · ×Gnσ(k)

,

(2) Pσ,n (resp. Pσ,n+m) the standard parabolic subgroup of Gn (resp. Gn+m) with Levi

subgroup Gnσ(1)
× · · · ×Gnσ(t)

(resp. Gnσ(t+1)
× · · · ×Gnσ(k)

),

(3) πσ = πσ(1) ⊠ · · ·⊠ πσ(k), which is a cuspidal automorphic representation of MPσ ,

(4) πσ,n = πσ(1) ⊠ · · ·⊠ πσ(t) and πσ,n+m = πσ(t+1) ⊠ · · ·⊠ πσ(k).

(5) Πσ,n = Ind
Gn(A)
Pσ,n(A) πσ,n and Πσ,n+m = Ind

Gn+m(A)
Pσ,n+m(A) πσ,n+m.

For σ ∈ Fix(π), we put

L(s, TσX̌) := L(s,Π∨
σ,n ×Πσ,n+m)L(s,Πσ,n ×Π∨

σ,n+m).

6.4.3. Periods of Eisenstein series. Let φ ∈ Π = Ind
G2n(A)
P (A) π = AP,π and write E(φ)(g) =

E(g, φ, 0) for the Eisenstein series of φ. Note that E(φ) ∈ T∆([G]).

Theorem 6.4.2. Let S be a sufficiently large finite set of places of F , that contains Archimedean

places and the places where Π or ψ is ramified. We also assume that φ is fixed by KS, and

we decompose WMP
φ as WMP

φ = WMP
φ,S W

MP ,S
φ . Then period P∗(E(φ)) is equal to

(∆S,∗
H )−1L(1, π, n̂−P )−1

∑
σ∈Fix(π)

LS(1,Π, TσX̌)LS(1, πσ, n̂
−
Pσ

)ZS(0,Ω
MQn
S (Nπ,S(σ)WMP

φ,S ). (6.4.2)

Proof. The proof is parallel to the proof of Theorem 5.5.2, so we will be brief.

By the constant term formula for Eisenstein series andTheorem 6.1.3, we can write

P∗(E(φ)) =
∑

w∈W (P ;Qn)

∫
KH

Z̃RS(n+ 1, EQn(M(w)R(k)φ))dk. (6.4.3)

If there exists 1 ≤ i < j ≤ k such that π∨i = πj , then both side of (6.4.2) is 0, therefore

from now on we assume that πi ̸= πj for i ̸= j.

Let S be a sufficiently large finite set of places of F , which we assume to contain Archimedean

places as well as the places where Π or ψ is ramified. We also assume φ is fixed by KS. Note

that there is a bijection between W (P ;Qn) and Fix(π), where each w corresponds to the
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σ such that wMPw
−1 = MP,σ. In the following, we fix an arbitrary w ∈ W (P ;Qn), and

corresponding σ ∈ Fix(π).

Note that the restriction of EQn(M(w)R(k)φ) to [MQn ] belongs to |·|
n+m

2 Πσ,n⊠|·|−
n
2 Πσ,n+m,

then it follows from (4.6.2) and (6.4.1) that∫
KH

Z̃RS(n+ 1, EQn(M(w)R(k)φ))dk = (∆S,∗
H )−1LS(1,Π∨

σ,n ×Πσ,n+m)ZS(0,W
MQn

M(w)E(φ),S).

(6.4.4)

By (2.6.3) and (2.6.4), we have

W
MQn

EQn (M(w)φ),S
=
LS(1,Πσ,n ×Π∨

σ,n+m)

L(1, π, n̂−P )
LS(1, πσ, n̂

−
Pσ

)ΩQn
S (Nπ,S(w)WMP

φ,S ) (6.4.5)

The theorem then follows from (6.4.3), (6.4.4), and (6.4.5). □

7. Truncation operator and the regularized period

7.1. Notations. Let H = Sp2n. We fix an upper triangular Borel subgroup P ′
0 of H, let

aP ′
0

:= a′0, and ∆′
0 = ∆P ′

0

Let G = G2n+1. For a semi-standard parabolic subgroup P ⊂ G, let a+P be the subset of

X ∈ aP such that ⟨X,α⟩ > 0 for any α ∈ ∆P .

For any semi-standard parabolic subgroups P ⊂ Q, let τ̂QP be the usual characteristic

function of a cone on aP defined in [Art78, §5].

7.2. The case m = 1. The case m = 1 is taking the Sp2n period of an automorphic form

on GL2n+1. In the work [Zyd19] of Zydor, he defined a regularized period of an automorphic

form on a reductive group over any reductive subgroup.

Let G = G2n+1 and H = Sp2n. Zydor’s regularization was written down explicitly in

[LWX25, §3.2] in this case, which we also briefly review here.

Let F ′ be the set of standard parabolic subgroups of H. For each P ′ ∈ F ′, there is a unique

semi-standard parabolic subgroup of G such that a+P ∩ a+P ′ ̸= ∅. If we write P ′ = P (λ) via

the dynamical method, where λ is a cocharacter of H. Then P can also be characterized

as P = P (λG), where λG denotes the corresponding cocharacter of G. In the following,

we will also denote by a standard parabolic subgroup of H with a letter with a ′, and the

corresponding parabolic subgroup of G will be denoted by the same letter without ′.

Let f ∈ T ([G]), we define

ΛT f(h) =
∑
P ′∈F ′

εP ′
∑

γ∈P ′(F )\H(F )

τ̂P ′(HP ′(γh)− TP ′)fP (γh).

By [Zyd19, Theorem 3.9] (see also [LWX25, Theorem 3.2.2]), when T is sufficiently positive,

ΛT f ∈ S0([H]), moreover, the map f ∈ T ([G]) 7→ ΛT f ∈ S0([H]) is continuous. For such T ,
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we define

PT (f) :=

∫
[H]

ΛT f(h)dh.

More generally, for Q′ ∈ F ′ and f ∈ T (Q(F )\G(A)) (see [BLX24, §4.3] for a definition),

we define ΛT,Q
′
f by

ΛT,Q
′
f(h) =

∑
P ′∈F ′

P ′⊂Q′

εQ
′

P ′

∑
γ∈P ′(F )\Q′(F )

τ̂Q
′

P ′ (HP ′(γh)− TP ′)fP (γh).

We can similarly show that ΛT,Q
′ ∈ S0([H]1Q′) and the map f ∈ T (Q(F )\G(A))→ ΛT,Q

′
f ∈

S0([H]1Q′) is continuous.

There is also a variant of truncation operator for Levi subgroup. Let Q′ ∈ F ′ and f ∈
T ([MQ′ ]) and T ∈ a′0, we define

ΛT,MQ′f(h) =
∑
P ′∈F ′

P ′⊂Q′

εQ
′

P ′

∑
γ∈(MQ′∩P ′(F ))\MQ′ (F )

τ̂Q
′

P ′ (HP ′(γh)− TP ′)fP∩MQ
(γh).

Since δQ,−1
P is bounded on {h ∈ MQ′(A) | τ̂Q

′

P ′ (HP ′(h) − T ) = 1}. By Lemma 2.3.1, for

f ∈ S([MQ]), the integral ∫
[MQ′ ]P∩MQ′

τ̂Q
′

P ′ (HP ′(h)− TP ′)fP∩MQ
(h)

is absolutely convergent. As a consequence,

(7.2.1) For f ∈ S([MQ′ ]) we have∫
[MQ′ ]

ΛT,MQ′f(h)dh =
∑
P ′∈F ′

P ′⊂Q′

εQ
′

P ′

∫
[MQ′ ]P ′∩MQ′

τ̂Q
′

P ′ (HP ′(h)− TP ′)fP∩MQ
(h)dh.

Similarly,

(7.2.2) For f ∈ S([MQ′ ]) we have∫
[MQ′ ]1

ΛT,MQ′f(h)dh =
∑
P ′∈F ′

P ′⊂Q′

εQ
′

P ′

∫
[MQ′ ]1

P ′∩MQ′

τ̂Q
′

P ′ (HP ′(h)− TP ′)fP∩MQ
(h)dh.

We say that T ∈ a′0 → ∞ if ⟨T, α⟩ → ∞ for any α ∈ ∆′
0. Therefore, when T → ∞,

τP ′(HP (h)− TP ′)→ 0 for any h ∈ H(A). Therefore, by the dominated convergence theorem,

we see that

(7.2.3) For any f ∈ S([G]), we have

lim
T→∞

PT (f) = P(f).

Let M be a Levi subgroup of G. We write XM∆ for the preimage of X∆ in X(M). Let

S∆([M ]) := SXM
∆

([G]).
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Lemma 7.2.1. Let Q′ be a proper parabolic subgroup of H. Then for any f ∈ S∆([MQ]), we

have ∫
[MQ′ ]1

f(h)dh = 0.

Proof. Let χ ∈ X
MQ

∆ , and f ∈ Sχ([MQ]), it suffices to show
∫
[MQ′ ]1

f = 0.

Assume that MQ′ = Gn1 × · · · ×Gnk
× Sp2r, then

∫
[M ′

Q]1 is the product of

• The “twisted diagnal period” on S([Gni ×Gni ])

f 7→
∫
[Gni ]

1

f(g, wℓ
tg−1wℓ)dg,

where wℓ denotes the longest Weyl element as usual.

• The symplectic period on S([G2r]):

f 7→
∫
[Sp2r]

f(h)dh.

Then from Theorem 5.3.2 and the definition of X
MQ

∆ , it is easy to see that at least one of the

integral above is vanishing. □

Combining Lemma 7.2.1 and (7.2.2), we see that

(7.2.4) Let f ∈ S∆([MQ′ ]) and T ∈ a′0 be sufficiently positive. Then∫
[MQ′ ]1

ΛT,MQ′f(h)dh = 0.

Proposition 7.2.2. Let f ∈ T∆([G]), then PT (f) is a constant of T , and this constant is

equal to P∗(f) in Theorem 6.1.3.

Proof. For P ′ ∈ F ′, let Γ′
P ′ be the function on aP ′ × aP ′ defined in [Art81, §2]. The function

Γ′
P ′ is compactly supported in the first variable when the second variable stays in a compact

subset and

τ̃P ′(H −X) =
∑
P ′∈F ′

P ′⊂Q′

εQ′ τ̂Q
′

P ′ (H)Γ′
Q′(H,X).

From this, for f ∈ T ([G]), T, T ′ ∈ a′0 sufficiently positive, we can write

ΛT+T
′
f(h) =

∑
Q′∈F ′

∑
δ∈Q′(F )\H(F )

Γ′
Q′(HQ′(δh)− TQ′ , T ′

Q′)ΛT,Q
′
f(δh).

Therefore

PT+T ′
(f)− PT (f) =

∑
Q′∈F ′

Q′ ̸=H

∫
[H]Q′

Γ′
Q′(HQ′(h)− TQ′ , T ′

Q′)ΛT,Q
′
f(h)dh.
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It remains to show that for any f ∈ T∆([G]) and any Q′ ̸= H ∈ F ′, the integral∫
[H]1

Q′

ΛT,Q
′
f(h)dh

vanishes. As S∆([G]) is dense in T∆([G]) and the integral above is continuous in f . Therefore

it suffices to show the vanishing for f ∈ S∆([G]). However, this directly follows from (7.2.1).

The final statement then follows from (7.2.3) □

Appendix A. Computation of the fixed point and the tangent space

In the Appendix, we do an exercise in linear algebra. We show that, under the hypothetical

Langlands correspondence, the fixed points of the L-parameter and the L-function L(TxX̌)

coincide with the concrete description in §1.2.3 and §5.5.2. In particular, the analogue of

Theorem 1.2.1 for function field matches with the Conjecture 1.1.1.

A.1. The global Langlands correspondence. We will assume the following properties of

the hypothetical global Langlands correspondence:

(1) There exists a locally compact topological group LF , such that there is a bijection of

isomorphism classes:

{n-dim continuous irreducible rep. of LF } ←→ {cuspidal automorphic rep. of Gn(A)}.

For a cuspidal automorphic representation π of Gn, we write ϕπ the corresponding

representation LF → GLn(C), and called it the L-parameter of π.

(2) Let P = MN be a standard parabolic subgroup of Gn. Let π be a unitary cus-

pidal automorphic representation of M . By the correspondence above, we have an

L-parameter LF → M̌ of π.

Let Π = Ind
Gn(A)
P (A) π, realized as Eisenstein series on Gn(A). Then the L-parameter

of Π is given by (or defined to be) LF → M̌ → GLn(C).

A.2. The fixed points. Let Γ be a group. Let n > 0,m ≥ 0 be integers. Assume that

we have a 2n + m-dimensional semisimple complex representation ϕ of Γ. Γ acts on X̌ :=

GL2n+m(C)/GLn(C)×GLn+m(C) via the representation Γ→ GL2n+m(C) composes with the

natural action of GL2n+m(C) on X̌. We write Fix(ϕ) for the set of fixed point of Γ on X̌.

Assume that ϕ decomposes as

ϕ =
k⊕
i=1

ϕi,

where ϕi is an ni-dimensional irreducible representation of Γ. We remark that ϕi and ϕj may

be isomorphic for i ̸= j.
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We may identify X̌ with the set of pairs (V,W ) where V,W are subspaces of C2n+m with

dimV = n, dimW = n + m and C2n+m = V ⊕W , where the action of GL2n+m(C) is given

by g · (V,W ) = (gV, gW ). The set Fix(ϕ) then corresponds to decompose the representation

into a direct sum of an n-dimensional invariant subspace and an n+m-dimensional invariant

subspace.

Considering the following condition:

(A.2.1) For any subset I ⊂ {1, 2, · · · , k} such that
∑

i∈I ni = n, we have ϕi ̸∼= ϕj for any i ∈ I
and j ̸∈ I.

If the condition (A.2.1) does not hold. Take a subset I such that
∑

i∈I ni = n and ϕi ∼= ϕj

for some i ∈ I and j ̸∈ I. Then the subrepresentation ϕi⊕ϕj has infinitely many decomposition

into irreducible representation. Take any such decomposition ϕi ⊕ ϕj = ρ⊕ ρ′, then the pair∑
s∈I
s ̸=i

ϕs + ρ,
∑
t̸∈I
t̸=j

ϕt + ρ′


is a fixed point. Therefore there are infinitely many fixed points.

Conversely, if the condition (A.2.1) holds. Let C2n+m = V ⊕W be a decomposition of

Γ-representation. Then (A.2.1) implies that each isotypic part of ϕ must completely lie inside

V or W . Since isotypic part is canonical, then Fix(ϕ) is finite. To conclude, we have shown

the following lemma

Lemma A.2.1. The set Fix(ϕ) is discrete (in the Zariski topology, so equivalent to finite) if

and only if the condition (A.2.1) holds.

From the discussion above, it is easy to see the following

Lemma A.2.2. When Fix(ϕ) is finite, the set Fix(ϕ) is in bijection with the set{
I ⊂ {1, 2, · · · , k} |

∑
i∈I

ni = n

}
Finally, the following lemma describe the representation given by the tangent space of fixed

point.

Lemma A.2.3. When x = (V,W ) ∈ Fix(ϕ). Then the representation of Γ at TxX̌ is isomor-

phic to V ∨ ⊗W ⊕ V ⊗W∨.

Proof. It suffices to show that for x = (V,W ) ∈ X̌, then as a GL(V )×GL(W ) representation,

TxX̌ ∼= V ∨ ⊗W ⊕ V ⊗W∨ = Hom(V,W )⊕Hom(W,V ).

Let C[ε] be the ring of dual number. Then TxX̌ can be identified with the pair of free C[ε]-

submodule (V,W) of C[ε]2n+m such that C[ε]2n+m = V⊕W and V⊗C[ε]C = V , W⊗C[ε]C = W .

Then it is direct to check that all such (V,W) is of the form (V + εV + εSV,W + εW + εTW )

for (S, T ) ∈ Hom(V,W )×Hom(W,V ). This finishes the proof. □
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[Beu21] Raphaël Beuzart-Plessis. “Comparison of local relative characters and the Ichino-

Ikeda conjecture for unitary groups”. In: J. Inst. Math. Jussieu 20.6 (2021),

pp. 1803–1854.

[BL24] Joseph Bernstein and Erez Lapid. “On the meromorphic continuation of Eisenstein

series”. In: Journal of the American Mathematical Society 37.1 (2024), pp. 187–

234.

[BLX24] Paul Boisseau, Weixiao Lu, and Hang Xue. “The global Gan-Gross-Prasad conjec-

ture for Fourier-Jacobi periods on unitary groups”. In: (2024). arXiv: 2404.07342

[math.RT].

[Boi25] Paul Boisseau. On some spectral aspects of relative trace formulae and the Gan–Gross–Prasad

conjectures, PhD thesis. 2025.

[BSV24] David Ben-Zvi, Yiannis Sakellaridis, and Akshay Venkatesh. Relative Langlands

Duality. 2024. arXiv: 2409.04677 [math.RT].

[CV24] Eric Y. Chen and Akshay Venkatesh. Some Singular Examples of Relative Lang-

lands Duality. 2024. arXiv: 2405.18212 [math.NT].
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