PERIODS DETECTING EISENSTEIN SERIES AND SUMS OF L-VALUES
I

WEIXIAO LU AND GUODONG XI

ABSTRACT. We study the automorphic period associated to a G-Hamiltonian variety M
whose dual is M = T*(G/L), where G is a general linear group and L is a Levi subgroup.
For certain cuspidal Eisenstein series, we prove that their period is equal to a finite sum
of special values of L-functions. This sum is indexed by the fixed points of the associated

extended L-parameter on M, confirming a conjecture by Ben-Zvi-Sakellaridis-Venkatesh in

this case.
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1.1. Relative Langlands conjectures of BZSV. The relative Langlands program investi-

gates the relation between periods of automorphic forms and special values of L-functions. In

their seminal paper [BSV24], Ben—Zvi, Sakellaridis and Venkatesh proposed a general frame-

work for this relationship. Their central idea is that periods are associated with Hamiltonian

G-varieties, and each Hamiltonian variety should admit a “dual” M, which is a G-Hamiltonian

variety. With this framework, the period Pys associated to M is conjectured to an L-value
attached to M.



To formulate a precise conjecture, the authors of [BSV24] work in the context of function
fields with everywhere unramified data. A part of their conjecture [BSV24, Conjecture 14.2.1]

can be summarized as follows:

Conjecture 1.1.1 (Ben-Zvi-Sakellaridis-Venkatesh). Assume that M = T*X, where X is a
G-spherical variety. Let  be a tempered, everywhere unramified automorphic representation
of G(A) with L-parameter ¢. If ¢ has only finitely many fized points {x1,--- ,x,} on X. Then

for a suitably normalized spherical vector f € w, we have
Z L(0, (T, X))

In the number field setting, Mao, Wan and Zhang [MWZ24] formulated an analog of the
Conjecture 1.1.1, under the assumption that the hypothetical extended L-parameter of
only has at most one fixed point on M. The goal of this paper is to prove specific cases
of Conjecture 1.1.1 in the style of [MWZ24] for number fields. We focus on the case where
X=aG / L, with G a general linear group and L a Levi subgroup. A key feature of this case is
that the set of fixed points is not necessarily a singleton, leading to an equality of the form

43 2

Automorphic period “=" Sum of L-values (1.1.1)

We note that the related work [Wan24| of Wan, who gavemain another example of (1.1.1),
that the period associated to U(2)\ SO(5) equals to a sum of two L-values.

1.2. The main result.

1.2.1. The period. Throughout the article, we fix a number field F. Let A := Ap and fix a
non-trivial additive character i) of F\A. We denote the general linear group GLj over F by
Gp.

For the introduction, we fix integers n > 0 and m > 0. Let G = Gapym. Let N be the
upper triangular unipotent subgroup of G. Let ) be the standard parabolic subgroup of G
with Levi component Gap 41 X G”l”_l. Denote the unipotent radical of @ by U. We define a
character ¥y of U(A) by

Yu(uij) = Y (Uanti1,2n42 + -+ + U2ntm—1,2n+m)-
. . . J :
Let H denote the symplectic group Sps, preserving the symplectic form 7 with

J = (1 1). We embed H into G as a subgroup in the upper-left corner. Note that H
normalizes U, and the character ¢y is invariant under the conjugation action of H(A).
For an automorphic form f on G(A), we define its Fourier coefficient along U by

fuu(g / fU9¢U u)du



We then define the period integral

P(f) = [ fup(h)dh. (1.2.1)
[H]
We remark that the integral defining P is not necessarily absolutely convergent. Thus, to
define this period for a broad class of automorphic forms, a regularization of the integral
(1.2.1) is required.
The period P is the period associated to the G-hyperspherical Hamiltonian variety M =
T*(G/HU,vy), whose conjectural dual variety is M = T*X, where X = Gontm/Gn X Gnim
(see [BSV24, §4], [Sak13, Appendix A]).

1.2.2. The main result. We will study the period P(f) when f is a cuspidal Eisenstein series.
Let P be a standard parabolic subgroup of G, let @ be a unitary cuspidal automorphic
representation of Mp. For concreteness, we assume Mp = Gy, X---X Gy, and m = mX- - - K7y,
where each ; is a unitary cuspidal automorphic representation of Gy, .

Let Ay, = R” ) denote the central subgroup of Mp(A), consisting of elements of the form

t11n
b with ¢; € Rso.
tiln,

We write 7y for the unique unramified twist of 7 such that the central character of m is
trivial on A3; . By an unramified twist, we mean 7 is of the form |- MR- R || with
Aj€iR for 1 <j <k.

Let ¢ € Indggg 7, which we regard as a function on Np(A)Mp(F)\G(A). Let E(p) =
E(-,¢,0) be the associated Eisenstein series. We denote by Fix(m) the fixed point set of the
(hypothetical) L-parameter of Indggii 7 acting on X.

Theorem 1.2.1 (Theorem 6.4.2, rough form). Assume that Fix(mg) is finite, then we have
Fix(mg) = Fix(7) and

(1) The period P(E(p)) can be defined canonically.

(2) Let S be a sufficiently large set of places of F, then we have

PE(p) =) [ L@mxa))™!
1<i<j<k

Z L3(1,T,X) - (local zeta integral ofW " at 8),
o€Fix(m)

(1.2.2)

where

. Ai’,* is a constant related to the Tamagawa measure (see §2.2.1)

o We define

We'r (9) = /[MN} p(ug)y™ (u)du
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to be the Whittaker coefficient of the section ¢, where M}g = MpNN. And we
decompose Wé\/fp as W%P = WéVIP’SWéVfSP with Wé,\/lp’s is spherical and equals 1
at g = 1.
We will address the definition of P(FE(¢)) in §1.3. For now, let us focus on the identity
(1.2.2).

Remark 1.2.2. o If m; = m; for some i # j, the L-function L(s,m; x 7}) has a pole at

s = 1. In this case, the right-hand side of (1.2.2) is interpreted as 0, so P(E(y)) = 0.

e Consider the function field analogue of Theorem 1.2.1 under the assumption that all

data are unramified. We may take S = @. Then if we normalize so that Wé\/[P (1) =1,
equation (1.2.2) becomes

PEw) =20 [ LQmxa)) Y LA TX).

1<i<j<k oEFix(r)

By aresult of Shahidi [Sha81, §4], the Whittaker coefficient Wy, (g) := f[N] E(¢)(u)y =t (u)du

of E(¢p) satisfies W) (1) = [;<;cjcp L(1, 7 X W}/)_l. Therefore, if we normalize so
that WE(@)(l) =1, then

P(E() =24 > LOLT,X).
o€Fix(r)
This is the form which exactly looks like Conjecture 1.1.1.

e The L function L(1, T, X) is an example of non-linear L-function; see [BSV24, Remark
14.2.4], [CV24].

e A version of Theorem 1.2.1 also holds for X = GLs, / GL,, x GL,, (see §5). In this case,
the period associated to the dual variety M (rather than M) is the Friedberg-Jacquet
period (or linear period) studied in [FJ93].

e In our earlier work [LWX25], we proved a special case of Theorem 1.2.1 when m =1
and P is a maximal parabolic. We note that the method in the present article differs
from the that of loc .cit.. We also note that the period associated to M is also studied
in [FJ93].

1.2.3. A more precise formulation. The statement of Theorem 1.2.1 involves the hypothetical
global Langlands correspondence. To avoid this, we now describe the fixed point set Fix(7)
and the L-function L(l,TUX ) solely in terms of the representation 7. In Appendix §A, we
verify that, assuming global Langlands correspondence, this description coincides with the
definition given by the L-parameter.

Let P be a standard parabolic and let w be a unitary cuspidal automorphic representation
of Mp as above. The condition for Fix(7) to be discrete is equivalent to the following:
(1.2.3) For any subset I C {1,2,---,k} such that ) . ; n; = n, we have m; # 7; for any i € I

and j € I¢, where I¢ denote the complement of 1.
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From this description, we see that the condition that Fix(my) is discrete is stronger than
the condition that Fix(m) is discrete. Therefore, Theorem 1.2.1 is slightly weaker than the
expectation from Conjecture 1.1.1.

Henceforth, we assume that (1.2.3) holds for mg. We define Fix(7) as the set of permutations
o:{1,2,--- k} = {1,2,---  k}, for which there exists 1 <t < k with:

(1) o) + - F oty = My Ngan) + -+ () = 1+ M.
(2) c(1)<---<o(t)and o(t+1) < --- < o(k).

Note that ¢ is uniquely determined by o and Fix(w) is in bijection with the set

{IC {12, B} D :n}.
el
In particular Fix(7) is non-empty if and only if, up to permutation, E(p) is an Eisenstein
series “passing through” the maximal Levi subgroup G,, X G- In other words, the period
P detects (n,n + m)-Fisenstein series.
For o € Fix(m) corresponds to the subset I above, we put

L(s,T,X) = H L(s,m x mj)L(s,m x m)').
(i.j)eIxI°

Note that the condition (1.2.3) ensures that this L-function does not have a pole at s = 1.
This completes the description of Fix(r) and L(1,T,X) in (1.2.2).

We now describe the local zeta integral. Let v be a place of F' and let R = MrNpR a
standard parabolic subgroup of GG. Let Il be an irreducible generic representation of Mg
and let W(II, ¢,) denote the Whittaker model of IIz. We define Indgggg W(II, v,) to be the
space of functions W™= : G(F,) — C such that for any g € G(F,), the map m € Mg(F,)
55 H(m)WME (mg) belongs to W(II, ).

Let @, denote the standard parabolic subgroup of G with Levi component G, X Gpym.
Let IIp; = II,, X II,, 4y, be an irreducible generic representation of Mg, (F,). For wM ¢
Indg% W, 9,) and A € afy ¢, we define

Zy(\ WM) = / WM (e Hou () g,
Nut(FO\H(F)

where Ny := N N H. The integral is convergent for Re(\) lies in a suitable cone and has
meromorphic continuation to aamc.

Note that Fix(7) can be identified with a subset of the Weyl group W& of G. Specifically,
we identify an element o € Fix(w) with the permutation that preserves the internal order

of each block of Mp. We write P, for the standard parabolic subgroup of Goniy with
Mp :Gna(l) XX G

o

- Let 8 bea finite set of places of F'. Then o induces a normalized

intertwining operator (see §2.4.3) Ny g : Indggz; W(m,s) — Ind?ﬁf}i) W(om,s).
6



Let gy = ) B - B 7, (parabolic induction) and ey pim = Tpqr) B - B 7o)
Finally, let QSQ” denote the Jacquet integral (see §2.6.2), it is a map from IndIGD(FS) W(om, ¢s)

a'(FS)
G(F:
to Indg\ %) W(Ily p B T n, Us)-

With these notations, the precise form of the identity (1.2.2) is given by

PE(p) =(A5)"" J[ LO,mxa))'x
1<i<j<k

o BPanX) | [ Ls(men x 7)) Zs(0, Q8" (N s(o)W2E)).
c€Fix(m) 1<i<j<k
(1.2.4)

1.3. Definition of the period. We now discuss the definition of the period integral.

1.3.1. Definition via continuous extension. Let S([G]) denote the space of Schwartz functions
on [G] and let T ([G]) denote the space of smooth functions of uniform moderate growth on
[G] (see 2.3.1). Both of them are vector spaces over C carrying a natural topology. When
f € S(|G]), the integral defining P(f) is absolutely convergent.

Let X(G) denote the set of cuspidal datum of G. (see §2.3.1) We have the following coarse
Langlands spectral decomposition according to cuspidal support:

—

LA(6) = Dy, F2(G)).

For a subset X C X(G), we put L3([G]) = @, cxL2([G]), and let Sx([G]) = S([G]) N
L%([G]). These are Schwartz functions with cuspidal support in X. Let 7x([G]) denote the
orthogonal complement of Sxc([G]) in 7 ([G]). When Tx([G]) carries the subspace topology
inherited from 7 ([G]), Sx([G]) is a dense subspace of Tx([G]).

Let XA denote the cuspidal datum represented by (Mp,w) such that 7 satisfies (1.2.3).
We write SA([G]) (resp. Ta([G))) for Sx, ([G]) (resp. Tx,([G])). Then we have the following
theorem:

Theorem 1.3.1. The period P, defined on SA([G]), admits a (necessarily unique) continuous
extension to Ta([G]).

Let P be a standard parabolic subgroup of G' and let 7 be a unitary cuspidal automorphic
representation of Mp such that my satisfies (1.2.3). Then the Eisenstein series E(yp) lies in
TA([G]). This explains the meaning of (1) in Theorem 1.2.1.

1.3.2. Definition via truncation operator. When m = 1, there is an alternative definition of
the period with potential applications, for example, in relative trace formulas. The period
P is taking a Sp,,, period of an automorphic form on GLg,+1. The work of Zydor [Zyd19]

suggests a regularization of the period P via truncation. Let f € T([G]) and let T be a
7



truncation parameter, in loc. cit., Zydor defines a truncated function A’ f on [H] which is

rapidly decreasing. In §7, we prove the following result:
Proposition 1.3.2. For f € Ta([G]), the integral
AT f(h)dh
[H]

is independent of T'. Moreover, this constant coincides with P(f) as defined in Theorem 1.3.1.

1.4. The strategy of the proof. The proof of Theorem 1.2.1 and Theorem 1.3.1 proceed via
an unfolding argument, analogous to the standard unfolding of period integrals into integrals
of Whittaker functions.

Let 1, be the degenerate character on N(A) defined by

¢n(u) = w(ul,Z + ot Up—1n F Upripr2 + o+ u2n+m71,2n+m)-

For f € T([G]), we define the associated degenerate Whittaker coefficient by:
Vi) = | g i
[N]
The key step is the following proposition:
Proposition 1.4.1 (Proposition 6.2.1). For f € SA(|G]), then we have

P(f) = Vy(h)dh,

/NH(A)\H (4)
The proof of this proposition involves performing a Fourier expansion along certain abelian
unipotent subgroups, similar to the Fourier expansion of a cusp form. However, since f is
not necessarily cuspidal, extra terms appear in the unfolding process. Our assumption on the
cuspidal support of f ensures that these extra terms do not contribute to the period.
For f € T([G]) and A € af) ¢, we define a global zeta integral by

Z\ f) = / Vi(h)eMHan D qp,
N (A)\H(4)

The global zeta integral Z(J\, f) is absolutely convergent when Re(\) lies in suitable half-
plane. We then show that for f € Ta([G]), the zeta integral Z(\, f) is holomorphic at A = 0,
and the map f — Z(0, f) provides the continuous extension of P to Ta([G]).

Let Q := @, N H be the Siegel parabolic of H. Let Ky denote a maximal compact of
H(A) which is in good position relative to the upper triangular Borel at the non-Archimedean
places. Using the Iwasawa decomposition H(A) = QM (A)Kp, the zeta integral Z(\, f) can
be expressed as

200 f) = /K Z8(sx +n + 1, R(k) fo, )dk, (1.4.1)

where
8



(1) Z®S denotes the (twisted) Rankin-Selberg zeta integral: for f € T([Gp X Gpim]), we
define

Z%8(s, f) = / Wi (Jtg71, (g >>rdet g/*dg,
Ny (A\Grn(A) 1,

where NV, denotes the upper triangular unipotent subgroup of GG,, and

Wi(g) = /[N o fu

is the Whittaker coefficient of f.

(2) @ € Ag, is the unique simple root and «" denotes its coroot and sy = —(\, V).

By (1.4.1), the problem reduces to show that the Rankin-Selberg integral admits a contin-
uous extension to uniform moderate growth functions with specific cuspidal support. When
m = 1, this is achieved in [BCZ22, §7]. We will show the case when m > 1 in §4. The proof
involves another unfolding process and an application of the Phragmen-Lindel6f principle.

Finally, when f = E(y) is a cuspidal Eisenstein series, we use the formula (1.2.4) to compute
P(E(y¢)) = Z(0, f). By combining the constant term formula for Eisenstein series and the
Euler decomposition of Rankin-Selberg integral, we will achieve (1.2.2). The summation of L-
values appearing in the formula results from the formula for the constant terms of Eisenstein

series.

1.5. The structure of this article. After the preliminaries in §2, we will review the result of
canonical extension of Rankin-Selberg period of corank 1 [BCZ22, §7] and equal rank [BCZ22,
§10.3] to functions with certain cuspidal support in §3. And we will do the higher corank case
in §4. Then we will study the period detecting (n,n)-Eisenstein series in §5 and detecting
(n,n + m)-Eisenstein series in §6.

1.6. Acknowledgement. We thank Chen Wan for introducing this problem. We thank
Raphaél Beuzart-Plessis, Paul Boisseau, Colin Loh, Omer Offen, Dihua Jiang, Zeyu Wang,
Hang Xue, Lei Zhang and Wei Zhang for helpful suggestions and discussions.

2. PRELIMINARIES

2.1. General notations.

e Throughout this article, unless otherwise specified, we fix a number field F. Let
A := Ap be the adele ring of F' and let Ay be the finite adeles. Let v be a place
of F', we write I, for the completion. Let S be a finite set of places of F', we write
Fs =[] eq Fo.

e We write G,, for the general linear group GL,, over F'. Let Sy, be the set of Archimedean
places, we write Fio := Fg__.



J
e Let Sp,, be the symplectic group preserving the symplectic form ( 7 > with

1
-(,)
e For integer m > 1, let 1,, denote the identity matrix of size m.

o Let Hoo = {2z € C|Re(z) > C}.

e For a ring R, we write R™ the column vector with coefficient in R of size n and we
write R, for the row vector of size n.

e Let f,g be two positive functions on a set X, we write f < ¢ if there exists C' > 0
such that f(z) < Cg(z) for any x € X.

e For a set X and a subset A C X, we write A° the complement of A in X.

2.2. Groups. Let G be a connected linear algebraic group over a global field F. Let [G] :=
G(F)\G(A) the adelic quotient of G.

2.2.1. Tamagawa measure. We fix the Tamagawa measure dg on G(A), and thus on [G] as
described in [BCZ22, section 2.3]. We recall the definition here. Fix a non-trivial additive
character ¢ : F\Ap — C*. We decompose ¢ as ¢y = [[1,. For each place v of F, 9,
determines the self-dual measure on F,. Let w be an F-rational G-invariant top differential
form on G. For each place v, |wl|, gives a measure dg, on G(F,). Moreover, according to the
results of Gross [Gro97], there exists a global Artin-Tate L-function Lg(s) such that

dgy(G(Oy)) = Law(0)
for almost all places v. We denote by
Agy = La(0)

and let A% denote the leading coefficient of the Laurent expansion of Lg(s) at s = 0. The

Tamagawa measure is defined by

dg = (A7) T do.-

The measure is independent of the choice of w. For a finite set S of places of F', let AZ*
denote the leading coefficient of the partial L-function LZ,(s) at s = 0.

2.2.2. Norms and heights. Let N be a positive integer. For € AN, we define
]| = Hmaxﬂxl,’u‘va s T les 1
v

where the product runs over the set of places of F'. For a linear algebraic group G, we fix a
closed embedding ¢ of G into an affine space. Then for g € G(A) we define ||g[|ga) = llt(g)]]-
Let || - H’G( a) be the norm defined by another embedding //, then there exists 7 > 0 such that
lgllaa) < ||g||/ér(A). We refer the reader to [Beu2l, Appendix A] for more properties of the

norm | - || a)-
10



For the rest of §2.2, we assume that G is a connected reductive group. We fix a maximal
split torus Ag of G and fix a minimal parabolic subgroup Py of G containing Ay. A parabolic
subgroup of G is called standard if it contains Py and is called semi-standard if it contains
Ap.

Let P be a semi-standard parabolic subgroup, we denote by Mp the Levi subgroup of
P containing Ay and denote by Np the unipotent radical of P. Since the natural map
Mp x Np — P is an isomorphism of varieties. We see that [[mnl|pa) ~ [[mlara) 17 vpa)-
That is, there exists ¢ > 1 such that

1/c c
ImallGy < Imlaalinlye < lmnlpe,

holds for all m,n € Mp(A) x N(A). As a consequence

(2.2.1) There exists C' > 0 and r > 0 such that for any g € G(A) and (m,n, k) € Mp(A)Np(A)K
such that g = nmk, we have |[m||y7(a) < C||g||g(A)

For a semi-standard parabolic subgroup P of G, we put
[G]p := Np(A)Mp(F)\G(A).
We define a norm on [G]p by

= inf .
lolle =__ int il

2.2.3. Weyl groups. Let W be the Weyl group of (G, Ag), that is, the quotient by My(F') of
the normalizer of Ag in G(F). For a standard parabolic subgroup P, we write W := WMp,
and we regarded it as a subgroup of W. For standard parabolic subgroups P, @, we denote
by

oWp:={weW | Mpnw 'Pyow=MpnNP, MgnwPw *=DMgnPR}.
The set gWp forms a representative of the double coset WO\W/WPF. For w € oWp, MpnN
wilMQw is the Levi factor of the standard parabolic subgroup P, = (Mp N w 'Qw)Np.

In the same way, Mg N wM pw~! is the Levi factor of the standard parabolic subgroup
Quw = (LN wPw™)Ng. We have P, C P, Q, C Q We also define

W(P;Q)={we QWp | Mp C w_lMQw}.
and
W(P,Q) ={w € qWp | Mp = w_lMQw}.

P and @ are called associate if W (P, () # @. For example, for any P,Q and w € oWp,

the parabolics P, and @Q,, are associate.
11



2.2.4. For a semi-standard parabolic subgroup P of G, define
ap = X*(P)®z R, ap:=Homz(X*(P),R).

We endow ap with the Haar measure such that the lattice Hom(X*(P),Z) has covolume 1.
Let ag := ap, and aj := a"jpo.

€p = (_1)dim ap—dim aG

Let Ap denote the maximal central split torus of Mp. Then ap can also be identified with
X*(Ap) ®z R. When P C @ are two semi-standard parabolic subgroups, then natural maps
P — @ and Ag — Ap induce a projection ap — ag and an injectiion ag — ap.

Let P} be a minimal semi-standard parabolic subgroup, let A pr Cap be the set of simple
roots of the Ap, action on Lie(N p(/)). Let P be a semi-standard parabolic subgroup, choose
a minimal parabolic subgroup P C P, then we denote by Ap the image of A p; under the
projection a p, = ap. Ap can also be identified with the set of simple roots of Ap action on
Lie(Np), in particular, Ap is independent of the choice of P).

2.2.5. Iwasawa decomposition. Let K be a maximal compact subgroup of G(A) which is in
good position with respect to Py. Then for any semi-standard parabolic subgroup P of G, we
have the Twasawa decomposition G(A) = P(A)K.

When G = G, we denote by K, the usual maximal compact subgroup of G,(A). In the
main text, we will sometimes use H to denote the symplectic group Sp,,,, and Ky will denote
the usual maximal compact subgroup of Sps,, (A) accordingly.

Lemma 2.2.1. There exists measurable maps G(A) — P(A) x K, g — (p(x), k(z)) such that
for any g € G(A), we have g = p(g)k(g).

Proof. Since P(A) x K is a Polish space, this follows from Kuratowski and Ryll-Nardzewski
measurable selection theorem applied to the natural map P(A) x K — G(A). O

We will sometimes refer to any function p(g), k(g) as in the previous lemma a measurable
(family of) Iwasawa decomposition.

For positive integers k,n, denote by Matgx,(A) the set of matrices of size k x n with
coefficients in A. For future use, we record the following estimate

Lemma 2.2.2. Let n,k be positive integers. Fix m such that Kk < m < n+k , let Q

x1
be the parabolic subgroup of G4k with Levi factor Gpik—m X (G1)™. For anyx = | --- | €

T
Matgwrn(A), z; € Ay, assume that under the Iwasawa decomposition Gp4(A) = No(A)Mo(A) K1k,

we write
Ln =u(x 9(w) T

12



where g(x) € GLp1k—m(A) and t(x) = diag(ti(x), - ,tm(x)). Then there exists M > 0 such
that

(2.2.8) For 1 <i <k, we have |tyir—i(z) - tm(x)| > ||zi|la,,

(2.24) 9@l < Il o, @l < 21 4 -
holds for any x € Matgxn(A,) and 1 <i < k.

Remark 2.2.3. Since different choices of Iwasawa decomposition will yield right translation
of g(z) or t(x) by elements of K, , hence (2.2.3) is independent of the choice of Iwasawa
decomposition and (2.2.4) holds for any choice of Iwasawa decomposition (after possibly en-

larging constant).

Proof. (2.2.4) follows from (2.2.1). Now we prove (2.2.3). Let ey, - , e, be the canonical
basis for Fy,;;. The basis e; yield a canonical basis {e; = A;; ei}[c{l’...yk}7|[|:l’ for the
exterior power \' Fy,4x. For w € A" Ay, write w = Y arer, we define

fwl = [T mac{larl,
v

For any g € Gp1m(A) and w € /\’ A, 1k, we denote by w - g the natural action of g on w. The

absolute value |-| satisfies

i
lw| € |w - k| < |w|, Ywe /\An+k,kz € K1k (2.2.5)

Let 1 < i < k. Consider w; := epqi A+ Aeptrk € /\”_i Ay, 1k. Since wg_;11 - u = w; for any
u € Ng(A). We can check that

<1n )
Wy *
€T 1I<:

By (2.2.5), applying right hand side of (2.2.2) to w yields

Ly
Wi -
! X 1k

Combining (2.2.6) and (2.2.7) yields (2.2.3). O

> [[max{|@inlo, - s [@inlo, 1} = [[i]a,- (2:2.6)
v

L Ntmk—i(z) -+t ()] (2.2.7)

2.2.6. The map Hp. We denote by A% the neutral component of real points of the maximal
split central torus of Resp/gG. For a semi-standard parabolic subgroup P of G, let AF :=
AR, We also define AF® := A% = Af .
The map
Hp: P(A) = ap, p— (x = log|x(g)]), x € X*(P),

extends to G(A), by requiring it trivial on K. The map Hp induces an isomorphism A¥ = ap,

we endow AY with the Haar measure such that this isomorphism is measure-preserving.
13



2.2.7. An estimate.

Lemma 2.2.4. For every k > n, if N is sufficiently large, we have
o lavllN <™, aeA”.
veF,\{0}
Proof. We write a as a't, where t € Ry and |a!| = 1. Then
-N -N N
Z HaU”An < Z ||tU”An Halllm
veF,\{0} veF,\{0}
Since the LHS is invariant under F'*, we have
-N -N N
Yo lavllY < Y el N latE,
veF,\{0} veF,\{0}
Since [G,,]! is compact, Hal||gm is bounded. Therefore we are reduced to the case when

a € R-g, in which case, it is proved in [BCZ22, (2.6.2.6)]. O

Corollary 2.2.5. For any c > 1, there exists Noy such that for any N > Ny, the integral

/. el afda
AX

is absolutely convergent for 1 < Re(s) < c.

Proof. We write [GL1]<! (resp. [GL1]=!) for the elements x € [GL4] such that |z| < 1 (resp.
> 1). We write the integral as

/ S foally ¥ |2 da.
[GL1]

v#0
By Lemma 2.2.4, when N is sufficiently large, it is essentially bounded by

/ |25~z +/ |z]°~Cdx.
(GLy<? QL 21

This is finite when 1 < Re(s) < c. O
2.3. Spaces of functions.

2.3.1. There are various function spaces on [G]p which we briefly recall below. The reader
may consult [BCZ22, §2.5] for more details.

A function f: G(A) — C is called smooth, if it is right J-invariant for some open compact
subgroup J C G(Ay) and for any gy € G(Ay), the function g — f(979s0) is C*°. A function

on [G]p is called smooth if it pulls back to a smooth function on G(A).
14



Let S([G]p) be the space of Schwartz functions on [G]p. It is the union of S([G]p, J) for
open compact subgroup J C G(Ay). Where S([G]p, J) is the space of smooth functions on
[G]p which are right J invariant and

Illx.v == sup |[R(X)f(2)||z]F < oo
z€[G]p
for any X € U(goo) and N > 0. The vector space S(|G]p,J) is naturally a Fréchet space and
S([G]p) is naturally a strict LF space.
For N > 0, let Sy ([G]p) be the set of smooth functions f on [G]p such that || f||x v < oo
for all X € U(go). It is also a natural LF space.
Let S°([G]p) be the space of measurable function f on [G]p such that

oo,y == sup |f(@)[l|z]|F < o0 (2.3.1)
z€[G]p
for any N > 0. It is naturally a Fréchet space.
Let T([G]p) be the function of wniform moderate growth on [G]p. It is the union of
Tn([Glp,J), where N > 0 and J C G(Ay) is open compact subgroup. Ty ([G]p,J) consists
of smooth functions f on [G]p which are right J-invariant and

1Fllx,-n = sup [R(X)f(x)|[l2] 5" < o0
z€[G]p
for any X € U(goo). The vector space Tn([G]p, J) is naturally a Fréchet space and 7 ([G]p)
then carries the induced (non-strict) LF topology.

For a Hilbert representation V' of G(A), we write V°° for the set of smooth vectors, i.e.
the set v € V' that is fixed by a compact open subgroup of G(Ay) and is a smooth vector as
G(Fx) representation. For each compact open subgroup J C G(Ay), the vector space yood
carries the usual Fréchet topology (for smooth vectors in a Lie group representation). We
endow V™ =], V> the LF topology.

For an integer N, we write L% ([G]p) for the weighted L? space consisting of measurable
functions f on [G]p such that

[ 1s@pPlalar < o
[Glp

Let L3, ([G]p)™ be the set of smooth vectors. By Sobolev lemma [Ber88, §3.4, Key Lemmal,

we have

(2.3.2) For each N > 0 there exists N’ > 0 such that we have closed embedding of topological
vector spaces

LY([Gp)® = Sni([Glp),  Sn([Glp) = L (IG]p)>.
15



2.3.2. Constant terms. For P C @, we have the following constant term map

T(Glg) > f fp:= (9 > f(ng)dn> € T([G]p).

[NP]
We recall the following useful estimate of constant term of a Schwartz function [BCZ22,

Lemma 2.5.13.1]

Lemma 2.3.1. Let P be a parabolic subgroup of G. Then there is a constant ¢ > 0 such that

for every N > 0,

fe sup Sp(x)N|z|F|fp(x)
z€[G]p

is a continuous semi-norm on S([G]).

As a direct consequence, we obtain

(2.3.3) Let P be a standard parabolic subgroup of G and k € C(ap) be a compactly
supported smooth function on ap. Then for every f € S(|G]), we have

(ko Hp) - fr € S(IG]p).

Also, combining Lemma 2.3.1 with (2.3.2), we obtain:
(2.3.4) For N > 0. There exists ¢y > 0 such that for any s € C with Re(s) > ¢y, we have

[Mp] > m = fp(m)dp(m)* € LR ([Mp])™.

The following two variable versions of the constant term estimates follows from the same
proof of [BCZ22, Lemma 2.5.13.1]

Lemma 2.3.2. Let G, H be connected reductive groups over F. Let P x Q) be a parabolic
subgroup of G x H. Then there exists ¢ > 0 such that for any M, N > 0,

[ sup — op(2) Voo M 2l Iyl | frxa @, y)l
(zy)€lGxH]pxq

is a continuous semi-norm on S([G x HJ).

2.3.3. Polarized ©-series. Let ® € S(A,,). We associate the following O-series :

O(g,®) = > ®(vg)lgl?, g€ [GLy] (2.3.5)
vEF,

The factor |g|% appears because the action of GL,(A) on S(A,) given by (g - ®)(v) =
<I>(vg)|g|% is unitary.

The convergence and the growth of the O-series are justified by the following lemma
16



Lemma 2.3.3. There exists M > 0 and Ny > 0, such that for every N > Ny, we have

D lwhlN < A, (2.3.6)
veF,

In particular, there exists Ng > 0 such that for any ® € S(A,,), we have O(-, ®) € Ty ([Gy)]).

Proof. Note that the left-hand side of (2.3.6) is decreasing in NN, so it suffices to find N = Nj
such that (2.3.6) holds. There exists ¢ > 0 such that

_N —cN N
[ohlly," < llvlly " 121G, @)

holds for any v € A, and h € G, (A). It then suffices to pick No > O such that > ||UH1§§NO <
00. O

Corollary 2.3.4. For any C > 0, there exists Ng > 0, such that for any N,N' > Ny, the
integral

/ el et hl* ] ¥ dn
Pr(F)\Gn(4)
converges for |Re(s)| < C.

Proof. The integral can be written as

/ S lohll ¥ det hl*||A] 5V dh.

Gl v#£0
By Lemma 2.3.3 and the fact that

max{|det A, [det h| 7'} < ||h|G,

for some r > 0, we see that the integral is bounded by

/ Hh‘|g;nN,+M+Re(5)rdh7

n

for some M > 0, the result follows. O
We also remark that, by the Poisson summation formula, ©O-series satisfies
0(g,®) =O('g ", ). (23.7)

2.3.4. Estimates on Fourier coefficients. Let P C G be a standard parabolic subgroup, % :
A/F — C* be a non-trivial character and Vp be the vector space of additive algebraic
characters Np — G,. Let [ € Vp(F) and set ¢y := ¢ oly : [Np] = C* where l5 denotes the
homomorphism between adelic points Np(A) — A. For ¢ € T(|G]), we set

ONpan(9) = / p(ug)r(u) 'du, g€ G(A).
[Np]
The adjoint action of Mp on Np induces one on Vp that we denote by Ad*.

Lemma 2.3.5. [BCZ22, Lemma 2.6.1.1]
17



(1) There exists ¢ > 0 such that for every Ni, Na >0,

o sup sup | Ad*(m N ) [ml| 32 6p(m)N2 o, (m)|
meMp(A) keK

is a continuous semi-norm on S([G]).
(2) Let N > 0. Then, for every Ny >0,

@ sup sup | Ad*(m DN ml N e w (mk
JSup  sup | A (m ™ gy Imlafy o g (mk)

is a continuous semi-norm on Tn([G]).

Proof. Without the term supycg, this is exactly [BCZ22, Lemma 2.6.1.1]. Since for any
continuous semi-norm || - || on S([G]) or Tn(G), f — supiex [|[R(E)f|| is still a continuous
semi-norm. The result follows. U

2.4. Automorphic forms and Eisenstein series.

2.4.1. Automorphic forms. Let G be a connected reductive group over F' and let P be a
standard parabolic subgroup. An automorphic form on [G]p is, by definition, is a Z(gso)-
finite function in 7 ([G]p). We denote by Ap(G) the set of automorphic form on [G]p.

Let Apcusp(G) denote the subspace of Ap(G) consisting of cuspidal automorphic forms,
that is, consisting of ¢ € Ap(G) such that pg = 0 for any standard parabolic subgroups
QCP.

Let J be a finite codimensional ideal of Z(g). Let Ap7(G) denote the subspace of
automorphic form ¢ € Ap(G) such that R(z)p = 0 for all z € J. Then there exists N > 0
such that Ap ;(G) is a closed subspace of Tn([G]). We endow Ap ; with the topology induced
from Tn(G). This topology is independent of the choice of N. We then endow Ap(G) with the
inductive limit topology Ap(G) = J 7 Ap 7(G). For each J, the inclusion Ap 7(G) — Ap(G)
is a closed embedding. We refer the reader to [BCZ22, §2.7.1] for the proof of these facts.

A cuspidal automorphic representation of G is defined to be a topologically irreducible
subrepresentation 7w of G(A) on Acusp(G). Note that a cuspidal automorphic representation
7 is unitary if and only if any ¢ € 7 has a unitary central character, in the sense that for any
z € G(A), p(zg9) = p(g)w(z) for some unitary character w : Zg(A) — C*, where Z; denote
the center of G.

2.4.2. Eisenstein series. Let P = MpNp be a standard parabolic subgroup of G. Let 7 be
a cuspidal automorphic representation of Mp. Let Ay cusp(Mp) denote the the sum of all
cuspidal automorphic representations of Mp(A) that are isomorphic to .

We write Indggﬁg 7 (resp. Ap) for the subspace

{p € Ap(G) | for any g € G(A),m — (5;%(m)<p(mg) €7 (resp. Axcusp(Mp))}.
of Ap(G).

18



For ¢ € Ap, and A € ap, we define the Eisenstein series as

E(g,p, ) = Y eMIr09Dg(yg).
YEP(F\G(F)
The series is absolutely convergent when Re(\) lies in some cones and by [BL24], [Lap08], it
has meromorphic continuation to a"];’(c. When 7 is unitary, for ¢ € Ap, the Eisenstein series
E(g,¢,A) is regular when X € ia}.

2.4.3. Intertwining operators and normalizations. Let P and @ be standard parabolic sub-

groups of G. For any w € W (P, Q) and A € a*R(C, the intertwining operator
M(w,\) : Ap(G) — Ag(G)
is defined by the meromorphic continuation of the integral
(M (w, N)¢)(g) = exp(—(wA, Hp(g)))
<[ exp((, Hp(w™'ng)))p(w ™ ng)dn.
(NonwNpw=1)(A)\Nq(A)

(see [BL24] for the meromorphic continuation). Let 7 be a cuspidal representation of Mp,
we denote by My (w,\) the restriction of M(w,\) to the subspace Ap.(G) C Ap(G). It is
known that if 7 is unitary, then M (w, A) is regular on iap.

Now we assume G is G, and write Mp = Gy, X --- x Gy, and 7 = m K --- W 7. Let

E;S C X*(Ap) denote the set of positive roots of Ap action on np. Let 5 € ZJIS be the positive
root of P associated to the two blocks G, and an with 1 <7< j<k. Set

(8.9 L(s,m x ) L(1—s,m) x )
Ng(P,8) = = )
e(s,mi x m/)L(1+s,m x /) L(1+s,m x7))
then we define
nﬂ'(w7 )‘)7 = H n7r(67 <A7 /8\/))
BEXP
wh<0
Following [MW89], we normalize M (w, \) as
Mz (w, A) = ng(w, \) N (w, \). (2.4.1)

G(A)

Let ¢ € Ind Pla) ™ Assume that ¢ = ®/ ¢, is factorizable, where ¢, € Tnd% )

P(F,) Mo Let S be
a sufficiently large finite set of places of F', which we assume to contain Archimedean places
as well as the places ¢, is ramified. We have a factorization

Ne(w, N = [ ] Na, (w, Mo (2.4.2)

vES

Here Nj, (w,\) is the meromorphic local normalized intertwining operator Indggzg Tu A —

Indgg’];(ww)w\, (see [MW89]). The product notation of (2.4.2) means N (w, )¢ is fac-
torizable and for v ¢ S the local component N (w, )y, is the unique unramified vector in
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G(Fy)
Indgr,) (wr
between 7, and (wm),.

The following result is taken from [MW89, Page 607]

)y such that Ny, (w, A)¢, (1) corresponds to ¢, (1) under the natural identification

Lemma 2.4.1. Let m, be a smooth irreducible and unitary representation of Mp(F,). Then
the operator Nx, (w, ) is holomorphic and unitary if X € ia}p. It is an isomorphism.

From now on, we simply write N (w) for Ny (w,0). If we put

L(s,m,np) H L(s,m X 7; ), (2.4.3)
1<i<j<k
then we have
L(1,wn, 1
ng(w,0) = (7,\762)
L(1,m,np)

For sufficiently large S as above, we denote by
w) = H Ny, (w) : Ind E ;7’['5 — IndGEFsi(wﬂ)s
vES
We finally remark that the normalized intertwining operator naturally extends to the case
when G is a product of G,,,.

2.5. Langlands spectral decomposition.

2.5.1. Cuspidal datum. Let G be a connected reductive group over F. Let X(G) denote the
set of pairs (Mp, ), where Mp is the Levi component of a standard parabolic subgroup P and
7 is a cuspidal automorphic representation of Mp(A) with central character trivial on A%¥.
Two elements (Mp,7) and (Mg, n’") of X(G) are called equivalent, if there exists g € G(F')
such that gMpg~' = Mg and gn = 7’. Let X(G) denote the equivalence class of X(G), an
element of X(G) will be called a cuspidal data.

For a standard parabolic subgroup P C G, there exists a natural map X(Mp) — X(G),
and it induces a map X(Mp) — X(G) which has finite fiber. For each subset X C X(G), we
will write XM for its preimage in X(Mp).

2.5.2. Langlands decomposition. For x € X(G), and P be a standard parabolic subgroup,
we write Df C S([G]p) the set of pseudo-Eisenstein series with respect to x (See [MW95,
§II.1], [BCZ22, §2.9]). Let Li([G]p) denote the closure of sz in L2([G]p), then we have the

following coarse Langlands decomposition:

@ L([G (2.5.1)

XEX(G
For a subset X C X(G), we write L%([G]p) := ®x€xL§(([G]P)‘ Then we define

Sx([G]p) = L3 ((G)p) N S((G]p). (25.2)
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Note that Sx([G]p) is a closed subspace of S(|G]p), since it is orthogonal complement of
Uxex O, in S([G]p).

We then define 7x([G]p) (resp. LA ([G]p)™) be the orthogonal complement of Sx<([G]p)
in T(Glp) (resp. L3([G]p)).

We call element of Sx([G]p) the set of Schwartz function with cuspidal support in X and
Tx([G]p) the set of uniform moderate growth function with cuspidal support in X. For any
subset X C X(G), the space Sx([G]p) is dense in Tx([G]p) (see [BCZ22, §2.9.5])

The following theorem [BCZ22, Theorem 2.9.4.1] describes the decomposition of a function

according to cuspidal support:

Theorem 2.5.1 (Beuzart-Plessis-Chaudouard-Zydor). We have the following statements:
(1) For f € S([G]p), let fy denote the x-part of f under the decomposition (2.5.1), then
fx € S([Glp) and f =73_, fy, where the sum is absolutely summable in S([G]p).
(2) The map f — f, : S([G]p) = T(|G]p) extends by continuity to a map T([G]p) —
T([G]p), which we still denote by f > fy. Then for any f € T([G]p), fy € Tx([G]lp)
and the sum f =73, fy is absolutely summable in T ([G]p).

2.5.3. Some lemmas.
Lemma 2.5.2. For each x € X(G), D§ is dense in Sy ([G]p) and T, ([G]p).

Proof. See [Boi25, Lemma 5.5.1.2] for the density in S, ([G]p), the density in 7, ([G]p) also
follows, since S, ([G]p) is dense in T ([G]p). O

Lemma 2.5.3. Let x € X(G) be a cuspidal datum and P be a standard parabolic subgroup of
G. Then we have

EE(S([Glp) € SW((G]),  T([G))p € T((Glp).-
Proof. See [BCZ22, Lemma 2.9.3.1]. O

Lemma 2.5.4. Let x € X(G) be a cuspidal datum, P be a standard parabolic subgroup of G
and x s be the inverse image of x in X(Mp). Then, for every f € S\ ([G]p) (resp. T ([G]p)),
its restriction fliar,) to [Mp] belongs to S,u ([Mp]) (resp. T ([Mp])).

Proof. If f € Di , this follows from the definition, and the general cases follow by the density
(Lemma 2.5.2). O

Lemma 2.5.5. Assume that G = H x L, where H and L are connected reductive groups over
F. Then we have a natural identification X(G) = X(H) x X(L). For a subset X C X(G),
denote its projection to X(H) by Xpg. Then for every Sx([G]), its restriction to [H] belongs

to Sx, ([H]).

The proof is the same as the proof of Lemma 2.5.4.
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Lemma 2.5.6. Let x € X(G) be a cuspidal datum, P be a standard parabolic subgroup of G,
and k € C°(ap) be a compactly supported smooth function on ap. Then T (|G|p) is stable
under the multiplication by ko Hp.

Proof. This can also be proved via the method in the proof of Lemma 2.5.4. Alternatively,
for f € T ([G]p), we need to show that f - (ko Hp) is orthogonal to any f’ € S,/([G]p) for
X # x. Then

(ko Hp)f, a1, = ((f, (ko Hp) [)ic)p-

Therefore, it reduces to proving S, is stable under multiplication by x o Hp. Since Sy is
orthogonal to O,/ to all x’ # x. By the same trick, it reduces to proving each O, is stable
under multiplication by (ko Hp), which follows from the definition. O

2.6. Whittaker model.

2.6.1. Local Whittaker model. We now assume that F' be a local field. Let G be a quasi-split
group over F'. We fix a splitting Spl = (B, T, {X4s}) of G. This means B = T'U is an F-Borel
subgroup, T is a maximal torus and {X,}, is a set of I'p invariant root vector.

We fix a splitting Spl of G and an additive character ¢ : FF — C*. They give rise to
a Whittaker data o = rogp ) = (B,%y) of G. More generally, for any Levi subgroup M
containing 7', they give rise to a Whittaker data s =ty sp14 = (Bar, Yoy, ) of M, where
By == BN M and ¢y, : Upr :=U N M — C* is the character induced by Spl and .

Let 7 be an irreducible representation of G(F'). Recall that 7 is called generic, if it sat-
isfies Homy(p) (7, %y) # 0. When 7 is generic, it can be identified with its Whittaker model
W(m,yu). Recall that

W(m, ) ={g+— AMr(g)v) |vern} C CP(UF))NGF),vu),

where A is any non-zero element of Homy (g (m, vy ) # 0.
When G = Gy, x -+ x Gy, is a product of general linear groups, we always fix the standard
splitting.

2.6.2. Jacquet integral. Let P = MpNp be a parabolic subgroup and let 7w be an irreducible
generic representation of Mp(F).

(2.6.1) Ind%%)

p(r) T can be identified with the following space of functions on G (F).

{wMP L G(F) - C| Vg € G(F),m € M(F) v 8 (m)W™ (mg) € WWUM)} |

We denote this space by Indggg W(m,Yu,,))

Let N be the unipotent radical of the parabolic subgroup P of G opposite to P. Let

wy = wgwf , where wy and wéw are the longest elements in W and W, respectively. Denote
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by wg € G(F) the Tits lifting [LS87, p. 228| of wg and let N’ = %Nﬁﬁfl. The Jacquet
functional is given by the holomorphic continuation of the Jacquet integral

L(WHr)(g) = / WM (o~ g )y () M dn.
N'(F)

) W(a, v0,,) and W(Ind§{3) my, du), where X €

apc, and 7y denotes the unramified twist of 7 by A. When A = 0, we may simply denote €2
by 2.
More generally, let P C @ be standard parabolics. Let wg? = w?wf . Let N' =

QNﬁwg? N Mg. Then we have a Jacquet functional Q@ from IndGEF; W(m, duy,,) —

It induces an isomorphism between Ind E

In dQE F; W(Indg m, 1/JUMQ), defined by the meromorphic continuation of

oL W) = [ oy W ) ()

2.6.3. Let G be a product of G,,. Let P,Q be standard parabolics G, and w € W (P, Q).
Let m be a generic representation of Mp(F'). The normalized intertwining operator N (w, \) :
Indggg TN — Indgg ;(wﬂ')w)\ transports to a map Ind EFg W(my, ¢) — Indggg W(wmya, ),
which we will still denote it by N(w, \), and we write N(w) for N(w,0).

2.6.4. Now let F' be a number field. Let N,, be the unipotent radical of the Borel subgroup
of G,,, we define a generic character ¥y, of [N,] by

U, (u (Z ui z+1>

Assume G = Gy, X -+ X Gy,. Let N be the unipotent radical of the Borel subgroup of G
and Yy = Y, K- K¢y, be the generic character on [N] = [Ny, ] X - -+ x [Ny, ]. For every
[ € T([G]), we set

Wy = /[N] f(ug)n(u)~tdu.

Let m be a cuspidal representation of G(A), then the map f +— Wj gives an isomorphism
between 7 and its Whittaker model

W(m, ¥n) ={Wy | f er}.
More generally, let P be a standard parabolic of G and ¢ € T (|G]p), we set

Mp( .\ _ 1
W (g) /[MPON] o (ug)ion ()~ \du,

Let 7 be a cuspidal unitary representation of Mp(A), then the map p € Ap, — ng,\/[P gives

an isomorphism between II = Indggg 7 and the induction of the Whittaker model

Indg(y) W(m, on) = {W¥r : G(A) = C,Vg € G(A),m € Mp(A) — 5P(A)( m)WMP (mg) € W(r,n)}
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For f € T([G]) (resp. ¢ € T([G]p)) and for a finite set of places S of F, let Wy (resp. W%P)
be the restriction of Wy(resp. Wé,WP) to G(Fs).

For ¢ € II, write E(¢)(g) = E(g, ¢, 0) for the Eisenstein series of ¢. Let S be a sufficiently
large finite set of places of F. Then it follows from [Sha81, §4] that

Whe)s = L(Lm,0p) "' Qs(Wod), (2.6.2)

when L(1,7,15) has a pole at s = 1, the right hand side is interpreted as 0.
More generally, let R be a standard parabolic subgroup of G containing P, we have that

M R \— M
Wit s = L(Lmnf ) "QgWd). (2.6.3)
2.6.5. We still assume that G is a product of G,,. Let P = MN be a standard parabolic
of G and let ¢ € Indggig
which we assume to contain Archimedean places as well as places where ¢ is ramified. Then
we have a decomposition Wé\/l = W%SW;‘J’S such that Wéw’s(l) =1 and is fixed by K5. For

Ny (w)p € Indggig wr = AQwr(G), we also have a decomposition

m = Ap.(G) and S be a sufficiently large finite set of places of F,

W (N (w)p) = We (Na(w) )W (N (w)p)

such that WMS(N,(w)e)(1) = 1 and is fixed by K5. Then it follows from (2.4.1) and (2.4.2)
that

W (Nx(w)) = Neg(w)(WS5). (2.6.4)
2.7. Topological vector spaces. In this article, a LVI'VS means a Hausdorff, locally convex
topological vector space. We refer the readers to [BCZ22, Appendix A] for more details. Let

V,W be two LCTVS. We endow Hom(V, W) with the pointwise convergence topology. If W

is quasi-complete, then so is Hom(V, W).

Let V,W, X be LCTVS. Let Bils(V, W; X) denote the set of separately bilinear map V' x
W — X. It consists of bilinear maps f : V x W — X such that for any v € V, the map
f(v,-) : W — X is continuous and for any w € W, the map f(-,w) : V — X is continuous.

The set Bils(V, W; X) is naturally identified with either Hom(V, Hom(W, X)) or Hom (W, Hom(V, X)).
Using the weak topology between Hom between any LCTVS, both Hom(V, Hom(W, X)) and
Hom(W,Hom(V, X)) carry a natural topology. They indeed induce the same topology on
Bilg(V, W; X)), which is in fact the locally convex Hausdorff topology given by the semi-norms
f = p(f(v,w)), where (v, w) runs through V' x W and p runs through the continuous semi-
norms on X.

The following fact is standard (see e.g. [BL24, §3.2]):

(2.7.1) A map C — Hom(V,W),s — Ts is holomorphic if and only if for any v € V, then

map C 3 s +— Ts(v) € W is holomorphic.
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Lemma 2.7.1. (1) Assume that V is LF, W is quasi-complete and let X be a topological
space. Let s € M +— Ty € Hom(V, W) be holomorphic and (s,z) € M x X — vs, €V
be a continuous map which is holomorphic in the first variable. Then, the map (s,z) €
M x X — Ts(vsq) € W is continuous and holomorphic in the first variable.

(2) Assume that V- and W are LF. Let s € M — By € Bilg(V,W) be holomorphic and
(s,k) e MxK —wvs, €V, (s,2) € (M, X)— wsy, €W be continuous maps which are
holomorphic in the first variable. Then, the function (s,z) € M x X + Bg(vs z, Ws 5)
is continuous and holomorphic in the first variable.

Proof. See [BCZ22, p. 329]. O
The following lemma is standard

Lemma 2.7.2. Let K be a compact Hausdorff topological group, X be a topological space,
and let f: Cx K x X — C be a continuous map which is holomorphic in the first variable.
Then for any x € X

seC |—>/ f(s, k,z)dk
K

is holomorphic and the map
reX— / f( k,x)dk € O(C)
K
18 continuous.

Let M be a complex manifold and let V' be a topological vector space. A map f: M — V
is said to be holomorphic, if for any A € V', the map M > m +— (A, f(m)) is holomorphic.

Let C € RU{—o0} and f : H~c — V be a holomorphic map. We say f is of order at most
d in vertical strips if for every d’ > d, the function z ezl f(2) is bounded in vertical
strips.

We also recall the following version Phragmen-Lindel6f principle [BCZ22, Corollary A.0.11.2].

Proposition 2.7.3. Let W be a LF space, and S C W be a dense subspace. Let C > 0 and
Zy,Z_ i Hso X W — C be two functions. Assume that

(1) For every s € Hsc, Z+(s,-) and Z_(s,j are continuous functional on W ;

(2) There exists d > 0 such that for every w € W and € € {£}, Hsc > Z.(s,w) is a
holomorphic function of order at most d in vertical strips;

(3) For any f € S, s — Z.(s, f) extends to a holomorphic function on C of finite order
in vertical strips satisfying

Z+(S,f) = Z—(_Saf)‘

Then Z, and Z_ extend to holomorphic functions C — W' of finite order in vertical strips

satisfying Z4(s,w) = Z_(—s,w) for every (s,w) € C x W.
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3. CANONICAL EXTENSIONS OF RANKIN-SELBERG PERIODS — CORANK 0 AND 1
3.1. Rankin-Selberg period on GL, x GL,1. In §3.1, we discuss some results on canon-
ical extension Rankin-Selberg period based on [BCZ22, §7].
3.1.1. Set up. Throughout §3.1, let G = GL,, x GL, 41 and let H = GL,, regarded as the
h
diagonal subgroup (h, . ) of G. For f € S(|G]), the Rankin-Selberg period of f is

defined by the absolute convergent integral
Pus(f)i= [ 1.
(H]
3.1.2. Rankin-Selberg regular cuspidal datum. Let x € X(G) be a cuspidal datum of G. As-
sume that y is represented by (Mp, ), and we write

Mp = Mp, x Mp, M, =Gp, X xGpn,y, Mpt1 =Gy X X G, (3.1.1)

+1
and
T=mpXmpp1, Tp=mp 1 XNy, T =M1 X K. (3.1.2)

We say x is Rankin-Selberg regular, if for any 1 <1 < 5,1 < j <, we have m,; # WT\{HJ.
We write Xgs C X([G]) for the set of all the Rankin-Selberg regular cuspidal datum. We
wite Trs([G)) (resp. Sgs((G))) for Teng (1G]) (resp. Seng(G])):

3.1.3. Zeta integral. Recall that N, is the unipotent radical of the Borel subgroup of GG,, and
we write N = N,, X Ny41. We define a character ¢y, of [N] by

n—1 n

() = [ =) i+ i
i=1 j=1

We write Ny for NN H. For f € T([G]), we associate
Wilo)= [ Flughtyu)ldu
[N]
For f € T(|G]) and s € C, we define the zeta-integral by
Z8S(s, f) = / W (h)|det h|*dh,

Np (A)\H(A)

provided by the integral is absolutely convergent. For any f € T(|G]), the integral is conver-

gent and holomorphic when Re(s) > 0, see [BCZ22, Lemma 7.1.1.1].
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3.1.4. Main results. The following theorem summarizes the main result of [BCZ22, §7].

Theorem 3.1.1. ([BCZ22, Theorem 7.1.3.1]) Let x be a Rankin-Selberg regular cuspidal
datum. Then

(1) The linear functional Prs on Sy([G]) extends (uniquely) by continuity to a linear
functional Phg on Ty ([G]).
(2) For f € T ([G]), the zeta integral Z(-, f) extends to an entire function of s. And we
have
Phs(f) = Z25(0, f).
(8) For any s € C, the functional Z®5(s,-) on Ty ([G]) is continuous.

We provide a mild extension of Theorem 3.1.1 to Trs([G]).

Proposition 3.1.2. We have the following statements:

(1) The linear functional Prs on Srs([G]) extends (uniquely) by continuity to a linear
functional Pg on Trs([G]).
(2) For f € Trs([G]), the zeta integral Z(-, f) extends to an entire function of s. And we
have
Prs(f) = Z25(0, /).
(3) For any s € C, the functional Z®5(s,-) on Trs([G]) is continuous.

Proof. The proof follows the same line of [BCZ22, p. 300], we sketch the proof. For f € S([G]),
we put

Zo(s, f) = /[H} F(h)|det h|*dh.

It is an entire function in s with the functional equation Z(s, f) = Z(—s, f), where f(g) =
f(tg™1). In order to apply Proposition 2.7.3, hence prove the proposition, it suffices to prove
that
(3.1.3) Z,(s, f) = ZR3(s, f) for any f € Srs([G]).
For x € Xgg, let f, be the projection of f in S, ([G]). Then by Theorem 2.5.1, the sum
> xexns x is absolutely summable in S([G]). By the main result of [BCZ22, §7], ZRS(s, fy) =
Zn(s, fy) for any x € Xrs. By [BCZ22, Lemma 7.1.1.1], for any s € C such that Re(s) > 0,
we have
Y 2%, f) = 2%, f).
XEXRs
where the RHS is absolutely summable. It is clear that Z,(s, f) depends continuously on f

for any s € C, therefore

> Zu(s, fx) = Zn(s, ),

XEXRs

therefore (3.1.3) is proved. O
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We endow the topological dual T;g([G]) of Trs([G]) with the weak topology. Since the
natural map Trs([G]) — (Tgs([G])) is a bijection, we obtain:

(3.1.4) The map ZB5(-,.) : C — Thg([G]), s — (f = ZB®S(s, f)) is holomorphic.

3.2. Rankin-Selberg period on GL,, x GL,. In §3.2, we discuss the canonical extension of
equal rank Rankin-Selberg based on [BLX24, §10.3]. The discussion is parallel to §3.1.

3.2.1. Let G = GL,, x GL,, and let H = GL,,, regarded as the diagonal subgroup of GG. For
f € S([G]) and ® € S(A,), the (equal rank) Rankin-Selberg period of f and @ is defined by
the absolute convergent integral

Prs(f,®) = [ f(h)O(h, ®)dh.
[H]

3.2.2. Rankin-Selberg regular cuspidal datum. Let x € X(G) be a cuspidal datum of G. As-
sume that y is represented by (P, ), and we write

MPZMPIXMPQ, MPlanIX"'XGnSa MPQZGT,“X”-XGmt (3.2.1)
and
T=mMm, m=maX--Wmr, m=m X Ky (3.2.2)

We say x is Rankin-Selberg regular, if for any 1 <1¢ <s,1 < j <t, we have m; # 7r2v,j. We
write Xgs C X([G]) for the set of all the Rankin-Selberg regular cuspidal datum. We write
Trs([G]) (resp. Srs([G])) for Taps ([G]) (resp. Sxps([G]))-

3.2.3. Zeta integral. We define a character ¢y of [N] by

n—1 n—1
Uy (u,u) =9 | - Z Ui+l + Z Wi
i=1 j=1
We write Ny for NN H. For f € T([G]), we associate
Wi = [ flugv(wdu
[N]
For f € T([G]), ® € S(A,) and s € C, we define the zeta-integral by

Z"(s, f, @) = W(h)®(e,h)|det h|*+2dh,

/]VH(A)\H (&)
provided by the integral is absolutely convergent. For any f € T(|G]), the integral is conver-

gent when Re(s) > 0 and holomorphic in s, see [BLX24, Lemma 10.2].
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3.2.4. Main results.

Theorem 3.2.1. ([BLX24, Theorem 10.4, Lemma 10.5]) Let x be a Rankin-Selberg regular
cuspidal datum and ® € S(A,). Then
(1) The linear functional Prs(-, ®) on Sy ([G]) extends (uniquely) by continuity to a linear
functional Pig(-, ®) on T, ([G]).
(2) For f € T, (|G]), the zeta integral Z(-, f,®) extends to an entire function of s. And
we have
Pis(F) = 2(0, £,0)
(3) For any s € C, the bilinear form Z(s,-,-) on T, ([G]) x S(A,) is continuous in the
sense that there exists continuous semi-norms || - || and || - ||" on T ([G]) and S(Ay)

respectively, such that
Z(s, f, @) < || fll@ll"

Remark 3.2.2. In loc.cit, the theorem is stated for (G, H)-regular cuspidal datum, but the
proof indeed works for general Rankin-Selberg regular cuspidal data. See also the proof of
Lemma 4.5.1.

The following proposition is an analog of Proposition 3.1.2 and we omit the proof.

Proposition 3.2.3. We have the following statements:

(1) The linear functional Prs on Srs([G]) extends (uniquely) by continuity to a linear
functional Pig on Trs([G]).

(2) For f € Trs(|G]) and ® € S(A,), the zeta integral Z(-, f,®) extends to an entire
function of s.

(3) For any s € C, the bilinear map Z(s,-,-) on Trs([G]) x S(A,,) is continuous.

By the same argument of (3.1.4), we obtain that for any ® € S(A,,), the map ZR5(-, @, ) :
C — Ths([G]), s = (f = ZBS(s, @, f)) is holomorphic.
Therefore, by (2.7.1), we see that

(3.2.3) The map ZR(-,) : € — Bily(Tas((G]), S(Aa); C),s = ((£,®) = Z8(s, £, ®)) is
holomorphic.

1
3.2.5. A twisted version. Let wy = ) € G, be the longest Weyl group element. For
1
f € S(G]) and ® € S(A,,), we define
Pro(f,0) = [ fwds ™ 0)0(s9)dg
For f € T(|G]), ® € S(A,) and s € C, we put the twisted Zeta integral

ZRS(s, f,®) = W (wi'g we, g)®(eng)|det g2 dg,

/Nn (A\Gn(A)
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provided by the integral is absolutely convergent.

Let x € X(G). Assume that x is represented by (M, ) where M and 7 are as in (3.2.1)
and (3.2.2). We say that x is twisted Rankin-Selberg regular, if for any 1 <i <s,1<j <t, we
have my; # mo ;. Let %RS C X(@G) denote the set of twisted Rankin-Selberg regular cuspidal
datum. We write Te5([G]) for Tz, ([G]).

Corollary 3.2.4. We have the following statements:

(1) For f € T(|G]) and ® € S(A,), there exists C > 0 such that the integral defining
ZRS(S, f, ®) is convergent for Re(s) > C and defines a holomorphic function on Hsc.

(2) For any ® € S(Ay,), the linear functional 75RS~<" ®) on Sg<([G]) extends (uniquely) by
continuity to a continuous linear functional Prs(-, ®) on Tgg([G]).

(8) For any f € Tz<([G]) and ® € S(Ay), the zeta integral ZBS(., f,®) extends to an
entire function. And we have

Prs(f,®) = Z7(0, f, @)
(4) For any s € C, the bilinear map Z%5(s,-,-) on Tas([G]) x S(Ay) is continuous.

Proof. For a function f on [G], we put a new function f' by f'(g1,92) = f(witg;  we, g2).
Then f € S([G]) (vesp. T([G])) if and only if f' € S([G]) (resp. f' € T([G])). Moreover,
f+— f" induces an isomorphism of S([G]) (resp. T ([G])) to itself.

Note that for f € S([G]) and ® € S(A,,), we have Prs(f, ®) = Prs(f’, ®). For f € T([G])
and ® € S(A,,), we have ZR5(s, f,®) = ZRS(S, /!, ®). The corollary then easily follows from
Proposition 3.1.2. O

By (3.2.3), we see that

(3.2.4) The map ZR5(-,-,) : C — Bily(Te5([G]), S(An); C), s = ((f,®) = ZR(s, f,®)) is
holomorphic.

3.2.6. Euler decomposition. Let S be a finite set of places of F, let 0 = 0,, ¥ o/, be a generic
irreducible representation of G(Fs). For W € W(o,¥ns) and ® € S(Fs), we define local
(twisted) Rankin-Selberg integral [JPS83] as

Z8S(s, W, @) = / W (wyh="wg, h)®(enh)|det A=+ dh.
N (Fs)\Grn(Fs)
The integral defining Eg‘s(s, W, ®) is convergent when Re(s) > 0 and has meromorphic con-
tinuation to C. Moreover, by [JPS83] and [Jac09], for any W € W(o,9¥ns) and ® € S(Fy),
the quotient
ZES(s, W, @)

Ls(s+ %,07\{ X al)

is entire.
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Let P C G be a standard parabolic subgroup and let 7w be a cuspidal automorphic repre-
sentation of Mp. Assume that (Mp, ) gives a twisted Rankin-Selberg regular cuspidal data

x- Let T = Tnd§3) m =11, B 1L,. Let ¢ € 1T and & € S(A).

Let S be a sufficiently large set of places of F', that we assume to contain Archimedean
places as well as the places where II, ¥, ¢ or ® is ramified. We then have a decomposition
Wg(p) = WE(@,SWE(@ such that Wg(@(l) = 1 and is fixed by K5. We also write ® as
® = P5P5, where @5 is the characteristic function of 0% and ®s € S(Fs).

By the unramified computation for the Rankin-Selberg integral, we have

_ ey~ 1
ZRS(S7E(QD)7 (I>) = (Aén) IZg{S(Sv WE(QO),S’ q)S)LS(S + 571_[7\{ x H{rz) (325)

4. CANONICAL EXTENSIONS OF RANKIN-SELBERG PERIODS — HIGHER CORANK

4.1. Statements of main results.

4.1.1. Notations. In §4, n > 0, m > 2 be integers. Let G = G,, X Gp4m. Let H = G, be the
subgroup of G consisting of matrices of the form (g, diag(g, 1,,,))-

For integers 0 < r < k, let N, be the unipotent radical of the standard parabolic subgroup
of G, with Levi G, x G]f_r. Note that No , = N is the upper triangular unipotent subgroup
of Gk and Nk,k = {1}

For 0 < r < n, we then put

NY:= Njp X Nepim, NE:=NYNH=N,,.

In particular, N := NOG is a maximal unipotent subgroup of G and Ny := NN H = Né{ is a
maximal unipotent subgroup of H.
We also put

G . _
Nn+1 «— ]. >< Nn+1’n+m

We define a character )n of [N] by

n—1 n+m—1
¢§V(u7u,) =y |- Zui7i+1 + Z u;‘,j+1 , u€ [Nn]’ul S [Nner]
i=1 j=1

For 1 <r <n+1, ¢y restricts to a character on the subgroup N&, we denote it by /..

4.1.2. Rankin-Selberg reqular cuspidal datum. Let x € X(G), assume that x is represented by

(M, ), where we write
M =M, X Mp+m, M,=Gn X - xGpn,, Mpirm=GCGmn X X G, (4.1.1)
and

T=Tn N Tpim, Tn=Tp1 X - Nmns, Tnpm = Tnem1 X R rppmy. (4.1.2)
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we say that x is Rankin-Selberg regular, for any 1 < ¢ < s and 1 < j < k we have

. Vv
7Tn,z # ﬂ-n—‘,—md

Let Xgrs denote the set of Rankin-Selberg regular cuspidal datum. We write Sgs([G]) (resp.
Trs([G])) for Sxps ([G]) (resp. Trs((G]))-

4.1.3. Zeta integrals. For f € T([G]), let
Wilo) = [ flug)i( ™ du
[N]
be its Whittaker model. For s € C, we put

Z85(s, f) = / W} (h)|det h|*dh
N (A)\H(A)

provided by the integral is absolutely convergent.

Lemma 4.1.1. For any N > 0, then there exist cy > 0 such that

(1) For every f € Tn([G]), the integral defining ZR®S(s, f) is absolutely convergent for
Re(s) > en, and Z(-, f) is holomorphic and bounded in vertical strips on Hsc, -
(2) For every s € Hscy, the functional f + ZBS(s, f) is continuous.

The proof the Lemma 4.1.1 will be given in §4.4.4.

4.1.4.

Theorem 4.1.2. We have the following assertions:

(1) For any f € S([G]), the Rankin-Selberg period
Prs(f) == /[H] fne ., (h)dh

is absolutely convergent.

(2) The restriction of Prs to Srs([G]) extends by continuity to a linear functional Pkg

on Trs([G]).
(3) For f € Trs([G]), the zeta integral Z(-, f) extends to an entire function of s. And we

have
Prs(f) = Z2"5(0, f)

(4) For any s € C, the functional ZR5(s,) is continuous.

The rest of §4 is devoted to the proof of Theorem 4.1.2.

4.2. Proof of Theorem 4.1.2.
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4.2.1. An unfolding identity. For f € S(|G]) and s € C, we put
— S
Znia (s, f) = /[H] Ine. g (B)ldet h[*dh. (4.2.1)

Lemma 4.2.1. For any f € S([G]), the integral defining Z,+1(s, f) is absolutely convergent
foranys € C, and s — Zn11(s, f) is entire. Moreover, for any s € C, the map f — Zp+1(s, f)

is continuous on S([G]).
The proof of the Lemma 4.2.1 will be given in §4.4.2.

Proposition 4.2.2. Let x be an Rankin-Selberg reqular cuspidal data. Then for any f €
S ([G]), we have

Znia(s, f) = Z%(s, f)
holds for Re(s) sufficiently large.

The proof of Proposition 4.2.2 will be given in §4.5.
Corollary 4.2.3. Let f € Srs([G]). For Re(s) > 0, we have

Zn+1(5> f) = ZRS(87 f)
holds for Re(s) sufficiently large.

Proof. By Theorem 2.5.1, we have a decomposition
f=> fo
XEXRs
where f, € S,([G]) and the sum is absolutely summable in S([G]). By Lemma 4.1.1 and
Lemma 4.2.1, both Z,,1(s,-) and Z®5(s,-) is continuous when Re(s) is large enough. The
result follows. g

4.2.2. Another zeta integral. For f € T([G]), we put

W}I / f ug wN du, ge Gn—l—m(A)
Then we define
In
Zi(s, ) = / / Wb | @ 1oy | 0| (dethpdadn.  (422)
(M\H(A) JMat (1) xn(A) 1

provided by the integral is absolutely convergent.

Lemma 4.2.4. For any N > 0, there exists cy > 0 such that
(1) For any f € Tn([G)), the double integral defining Z; (s, f) is absolutely convergent for
Re(s) > en, and Z(-, f) is holomorphic and bounded in vertical strips on Hsc, -

(2) For every s € Hscy, the functional f — Zi(s, f) is continuous.
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The proof of the Lemma 4.2.4 will be given in §4.4.5.

4.2.3. Another unfolding identity. Let wy ,, denote the matrix of size m. Let
1

1
Wy, m denote the matrix < " w ) For a function f on [G], we put f(g) := f(*g71).
l,m

Proposition 4.2.5. Let x be an Rankin-Selberg reqular cuspidal data. Then for any f €
S ([G]), we have

Zn—i—l(sv f) = Z{(—s, R(“%,m)f)a

when Re(s) is sufficiently large.

The proof of Proposition 4.2.5 will be given in §4.5.
By the same argument of Corollary 4.2.3,

(4.2.3) Zni1(s, f) = Z1(—s, R(wn,m) f), holds for any f € Srs([G]).

4.2.4. Proof of Theorem 4.1.2. Assertion (1) is a special case Lemma 4.2.1. Fix N > 0, we
apply Proposition 2.7.3 to

W:L%V,RS([G])OO7 S:SRS([G])v Z+(S,f) :ZRS(S7f)7 Z—(Svf) :Zi(S,R(wn,m)f).

The conditions of Proposition 2.7.3 are satisifed by Lemma 4.1.1, Lemma 4.2.4, Lemma 4.2.1,
Corollary 4.2.3 and (4.2.3).

As a consequence, for any f € L?\,’RS([G])‘X’, ZRS(s, f) is entire and for any s € C, the map
f s ZRS(s, f). As N varies, Assertion (4) is proved.

For f € L3™([G])>, we put

Prs(f) = Z(0, ),

by Corollary (4.2.3), P defines a continuous extension of Prs to L% ([G])*°. As N varies,
assertions (2) and (3) are proved.

4.2.5. We endow the topological dual T;¢([G]) with the weak topology, from Theorem 4.1.2,
we see that

(4.2.4) The map ZB5(-,) : C — Ths([G)), s = (f — ZB5(s, f)) is holomorphic.

4.3. Exchange of root identity. We prove an exchange of root identity in the style of

[MS11, Appendix A], [IT13, §4]. The main result is Corollary 4.3.3.
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FIGURE 1. The unipotent subgroups U,, U.., R, and C,

4.3.1. Settings. For 0 < r < m — 1, let U, denote the unipotent subgroup of G, of the
shape in the left of figure 4.3.1.
It consists of matrices (u;;) with 1 on the diagonal and u;; # 0 only when j > ¢ > n or
1<i<n,j>n+r+2orl<j<nandn+1<i<n+r. Notethat Uy = Npt1n+m
Let 1), denote the character (u;;) — ¥ (Unt1int2 + - + Untm—1,n+m) o0 Ur(A).
ln

1,
For r > 1 and = € A, let R,(x) denote the matrix r . . We write R,
x

JP—

for the algebraic subgroup of G4y, formed by R,(x).
4.3.2.

Lemma 4.3.1. Let 1 <r<m—1and 1<k <r. Let f € T([Gntm]). The integral
In
Lr—k

/ Tty epr g |dx (4.3.1)
Maty, . (A) x L
is absolutely convergent for any g € Gpim(A).
The proof of Lemma 4.3.1 will be given in §4.3.5.
4.3.3.

Lemma 4.3.2. Let f € T([Gnym]) and 1 <r <m —1, then

furn(9) = /A foto s (Re()g)da (43.2)

holds for any g € Gpim(A), where the integral on the right-hand side is convergent.
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Proof. The convergence of the integral follows from Lemma 4.3.1. For 1 < r < m — 1, let
U, := U, N"U,_1 denote the subgroup of U,, see the shaded region of right hand side of figure
4.3.1. Let 1] denote the restriction of ¢, (equivalently 1,_1) on U.

1, Y

17"71

For y € A", let C,(y) denote the element of Gpim(A). Let C,

1m—7‘
denote the algebraic subgroup of Gy, formed by C,(y).
The following statements can be checked directly:

(1) U =U/ x R, Up—1 = U] x Cy, R, normalizes U,_; and C, normalizes U, .

(2) By (1) above, we can write an element of U,_1(A) by u/C..(y), where v’ € U/ (A) and
y € A". For a € F,,, the map u'C,(y) — . (u)(ay) defines a character of U,_1(A)
trivial on U,_1(F). We denote this character by 1,_1 4. Note that ¥,_1 0 = 1,_1.

(3) The equality

o1 (Ry(~a)uRy () = -1, —a(u) (4.3.3)

holds for any a € Fy,,u € U,—1(A).
(4) As a consequence of (3) above, the equation

U (Re(—a)ulty(a)) = ;. (u) (4.34)

holds for any a € F,, and u € U/ (A). Similarly, one can check

Ur(Cr(=0)uCy (b)) = . (u) (4.3.5)

holds for any b € F™ and u € U(A).
By (4.3.4) above, for any g € Gp41(A), we have

mw@zﬁmeMmmmm (4.3.6)

By (4.3.5), for any g € Grym(A), the map y +— fiyr 4/ (Cr(y)g) defines a function on F™\A™.
Therefore, by Fourier expansion, we can write

furwn(9) = / Furr (Cr@)9)Y ™ ay)dy = D fur_y s _a(9) (4.3.7)
a€Fy, TAAT acFy,
By (4.3.3), we have
fur—l:wr—l,—a, (g) = fl/lr—hlbr—l(Rr(a)g)' (4'3'8)

Combining (4.3.6), (4.3.7) and (4.3.8) and Lemma 4.3.1, (4.3.2) is proved. O
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4.3.4.

Corollary 4.3.3. For any f € T([Gni+m]), we have
L
fum—lawm—l(g) :/ fuo,’lﬁo X 1m71 g dmv
Mat(mfl)xn(A) 1

where the integral of the right-hand side is absolutely convergent.

Proof. The convergence of the right-hand side follows from Lemma 4.3.1.
The equality follows from successively using Lemma 4.3.2. The convergence of each step
also follows from Lemma 4.3.1. 0

4.3.5. Convergence.

Proof of Lemma 4.5.1. We temporarily denote by P the standard parabolic subgroup of G+,
whose Levi factor is G’{*k x G, X G;”fﬁk. Let 9N, denote the character

(uij) = Y(ui2 + - + Up—k—1r—k + Ur—kntr—k+1 + Untr—kt1ntr—k+2 + - + Untm—1n+m)

on Np(A). When r — k = 0, this is understood as (ui;) = Y (Upnt1 + -+ + Untm—1,n+m)-
When r — k = 1, this is understood as (uij) — Y (U1 nt2 + Unt2,n43 + *+ + Untm—1,n4+m)-

Let w € Gpim(F) be the permutation matrix associated to the permutation sending
1,2,---,n+mton+1,--- . n+r—~k/1,--- nn+r—k+1,---,n+ m respectively. Then
the right hand side of (4.3.1) can be written as

17"7k:

In
Inp, gw | dx. (4.3.9)
/Mathn(A) P z Lk

L—r

Therefore we are reduced to show the convergence of (4.3.9). Let @ be the parabolic subgroup

1
of G4 whose Levi factor is G, x (G1)¥. Assume that ( " ) is written as (2.2.2), then
T g
we have the Iwasawa decomposition
1r7k 17‘7]6
1
x 1 t(x)
P Im—r

for some (v/(x),k'(x)) € Np(A) x Ky Write t(x) as diag(ti(x), - ,tx(z)), assume that
f € TN([Grnim)), by Lemma 2.3.5, we see that the integral (4.3.9) is essentially bounded by

N- N
/| Hnm 2)tepa (@) 7 ||A1H||tz DI, 9]y, de (4:3.10)
athn
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for any N; > 0. Note that for any Ny > 0, there exists N; > 0, such that

k—1 k
LT ta(@)tin (@)~ M ltn @) 3™ < T a(@) - ) 172 (4.3.11)
i=1 i=1

Combining (4.3.11), (2.2.3) and (2.2.4), we see that the integral (4.3.10) is bounded by

[E2 AR e
Aathn(A) Maty x n (A)

for any Ny > 0. The convergence hence follows. O
4.4. Convergence of zeta integrals.

4.4.1. More zeta integrals. The goal of §4.4 is to prove convergence of various zeta integrals.
For later use in §4.5, we introduce more zeta integrals. Let f € S([G]). For 1 <r <n+1,
we define

ZT(S7 f) = / fNTGﬂ/J;« (h)|det h’sdh
Pr(F)NT(A)\H(A)

Note that when 7 = n+1, this coincides with the definition in (4.2.1), and Zi(s, f) = Z®5(s, f)
For 1 <r < n, we also introduce

1n
Fyegpt [ B | @ Lo h | |det h|*dh.
1

Zi(s, f) = / /
Pr(F)Nr,n(A\Gn(A) JMat(p,_1)xn(4)

Note that when r = 1, this coincides with the definition in (4.2.2). And we put

L,

(s, f _/ / f n-1 | hy | ¢ 1,— h | |det R|*dh.
+1( ) [Gn] Y Mat(_1)xn(A) N§+1ﬂ/’n+1 1 ) ‘ ’

Lemma 4.4.1. For f € S([G]) and 1 <r < n+ 1, the integral defining Z, (s, f) and Z)(s, f)
are absolutely convergent when Re(s) is sufficiently large.

4.4.2. Proof of Lemma 4.2.1. By Lemma 2.3.2, for any N, M > 0, there exists a continuous
semi-norm || - || on S([G]), such that the integral defining Z,1(s, f) is bounded by

R i e O R

for some constants ¢ > 0 and any N, M > 0. The result follows.
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4.4.3. Proof of Lemma 4.4.1. Let @, denote the parabolic subgroup of H with Levi component
G, x G77". Convergence of Z,41(s, f) is covered in Lemma 4.2.1. For 1 < r < n, let P,
denote the parabolic subgroup of G' with Levi component (G, x G7™") x (G, x G7"T"™").
Using Iwasawa decomposition H(A) = @Q,(A)K,. The integral defining Z, (s, f) is bounded

by
h
R(K) fne yr < t)

/P,.(F)\GT(A) /[Gll*” /K

By Lemma 2.3.5, there exists ¢ > 0 such that for any N > 0 and N; > 0, we have

-1
h
|deth|5|dettls5Qr< t) dhdtdk. (4.4.1)

R(k)fne g1 <h t) <
—cN
47 e 2 5 2 et 52 e N 6, (h t) Rl NG,
where t = diag(t1, -+ ,t,—r). Since for any Ny > 0 there exists N; > 0 such that
16 enhr 28 ety 250 1t L 2 e Y < Hler Pl 2 52 - - lnr 5

We then see that the integral (4.4.1) is essentially bounded by

n—r t—r
/ [ lenl TT el et s~ T Oc¥ande, - (4.4.2)
Pr(FN\Gr(A) J[G1]"" i=1 i=1

for some ¢ > 0 and any N > 0 and Ny > 0, where
a(N)=2cn+m—r)N+n—r, «o;(N)=c2n+m—4r+2—4i)N+(n—2r+1-2i). (4.4.3)

We have a(N) > ay(N) > -+ > ap—r(N). Let C = 2 in Corollary 2.3.4, together with
Corollary 2.2.5, we see that there exists Ny > 0 such that for any C; > 0 and N > Ny, the

integral is convergent for
-2+ a(N) <Re(s) <24 a(N) and 1+ a1(N) < Re(s) < C1 + ap—r(N).

As N and C} vary, we see that the integral is convergent when Re(s) > 1. This shows Lemma
4.4.1 for Z,(s, f).
To show the convergence of Z/(s, f). We prove the case when 1 < r < n, the case when
r = n+1 follows from a similar (and easier) argument. For simplicity, for x € Mat ,;,_1)x, We
Ly
write A(z) for the matrix | z 1,1 . The absolute convergence of Z/ (s, f) is equivalent

to the convergence of

/ / [y et (s RAG)) et B,
/PT(F)Nr,n(A)\Gn(A) Mat(mfl)Xn(A) r 2 ¥r
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Using Iwasawa decomposition, note that for k € K,,, kA(x)k~! = A(xk), the integral can

(o)

—1
h
\deth|Re<S>—mydett\Re@)—ma@( t) dzdkdtdh.

be written as

/7’r(F)\Gr(A) /[GllT /Kn /Mat(man(A)

(4.4.4)

Let R, (resp. R!) denote the parabolic subgroup of Gy, (resp. Gpim—1) with Levi compo-

1
nent G, x G777 (resp. G x G 1) Let ( " = n/(x)m/(x)k (x) be a measurable
€T m
1
decomposition of [ " . under the Iwasawa decomposition Ng: (A) Mg (A)Kyqm—1 (see
z 1,
/! !/ k/
§2.2.5). Then we can write A(z) as n(z) ) m/(z) . () = n(x)m(x)k(z),

which is an Iwasawa decomposition of A(z) under Gy, 1m(A) = N (A) Mg, (A)K,4+m. We also
write m(x) as m(z) = diag(h(z), t(x),t (x), 1), where h(x) € GL,(A), t(z) = diag(t1(x), - , tn—r(z))
and ¢'(z) = diag(#)(x),--- ,¢,_;(x)). The integral (4.4.4) then can be written as

m—1
(R(k,kk(x))f)Nrc,ww((h t),<h t) m<x>>'

/7>r(p>\cT(A) /[Glr / n /Mawm_l)mm)
-1
|det, h|ReE)=m | det ¢|Rels)=mg, (h t) dzdkdtdh.

(4.4.5)

We will use the notation from Lemma 2.3.5. Let [ denote the map

n—1 n+m—1
/
(u,u') € Np, — Zui,i-i-l - Z ujj+1 € Gq.
Jj=r

i=r
One readily checks that there exists Ny > 0 such that

-1 n—r m—1
Ad*<<h t>’<h t> m(m)> U > lleehn(@)] ™ T ItataCo)l™ T 1))
i=1 i=1

Ve, A
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Therefore, by Lemma 2.3.5, we have

R(hkk(w))ng,w-l((h t),<h t)m< >> < leshh(z ‘NIHHH —Nlr[ut I

—cN
I el e I 1 ) - m((h t),<h t) m<x>> .

for some ¢ > 0 and any Ny, No > 0 and N > 0. By Lemma 2.2.2, for any N3 > 0, we can find
Ny > 0 such that right hand side of (4.4.6) is essentially bounded by

(4.4.6)

—cN

h
h
levh]~ NlHntn Ml el G o, ( t), '
1

m

Therefore the integral (4.4.5) is essentially bounded by

lerh [N TT Nealln ™ 2l g IRl It o
/PT(F)\GT(A)/[Glr/Mat(m_M(A) Ar H 4 Moty () 1Pl I
(4.4.7)

\det h|Re(s)fa(N)fm H |ti‘Re(s)fai(N)fmdxdhdt

for any N, N1, N3 > 0, where a(N) and «;(N) is as in (4.4.3). The convergence follows from
the convergence of (4.4.2) when Re(s) > 0.

4.4.4. Proof of Lemma 4.1.1. Let By be the upper triangular Borel subgroup of H. By
Iwasawa decomposition H(A) = By (A)K,, the integral defining ZR®5(s, f) is bounded by

/[GT] /K |W1,%(k)f(t> ||det ¢[*0,, (t)~*dtdk.
1 n

Similar to the derivation of (4.4.2), for any No > 0, there exists a continuous semi-norm || - ||
on 7n([G]), such that the integral is essentially bounded by

71 LIy, ar,

111

Note that there exists M > 0 such that
Itllc, < max{|t|™, [t|~M}, (4.4.8)

therefore the result follows from Corollary 2.2.5.
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1
4.4.5. Proof of Lemma 4.2.4. Let = n/(z)t'(x)k'(z) be a measurable decomposition

z m

under Gym—1(A) = Ny ym—1(A) Tnsm1(A) Kpim_1. Then A(z) = () ' t(@) 1) (’“'(f”) 1) =

n(z)t(x)k(z), where t(x) = diag(ti(z), -+, tn(z),t)(x), -+t _,(x),1). Same as the deriva-
tion of (4.4.5), the integral defining Z/ (s, f) is essentially bounded by
/ / / W o (1 12))| et 265, (1) ek,
[G1]" S K/ Mat (1) xn (A)
The using the same argument for (4.4.7), for any Ni, N3 > 0, there exists a continuous
semi-norm || - || on Ty ([G]), such that this integral is essentially bounded by

n
i/ Hl\tll el a0, [Tl =1zt
Gl Mat(m 1><'n) (m—1)xn paiy

Using (4.4.8) and Corollary 2.2.5, the result follows.

4.5. Unfolding. The goal of §4.5 is to prove Proposition 4.2.2 and Proposition 4.2.5.
Recall the subgroup Uy and the character 1y on Uy(A) defined in §4.3.1. By the change of
variable h +— th=!, for any f € S([G]) we have

Zusa(s,f) = /[H]<R<wn,m>f>{1}x%,¢al<h>|deth|—8dh.

Therefore by Corollary 4.3.3 and the absolute convergence of Z] |, we see that

ZTL+1 (Sa f) = Z':z—l—l(_sa R(wn,m)f)

Therefore we are left to show:

Lemma 4.5.1. Let x € X(G) be an Rankin-Selberg regular cuspidal data. Then for any
1<r<nand f € S(G]),

ZT(Saf) :ZTJrl(S’f)a Z'/,'(Svf) = 7/*+1(Saf)
holds when Re(s) is sufficiently large.

Proof. For 1 < r < n, recall from the introduction, we regard U, as a subgroup of GG,,. We put
US = U, xU, C G. We also define UY, | := {1} xUp41. For 1 <7 <n+1Let U := USNH.
For 1 < r < n, using Fourier expansion on the compact abelian group U (A)US (F)\US (A),

we can write

fne G nt +(ug)du = (fye Gt +)ye (9)+ Z (fye Gt +) TG+171/,¢((%W)9),

U] Ui A EPH (NG (F)

where

(e s, (9) = /[UG e (ug)dg,

7‘+1
7‘+1]
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and

chipwl’i (Ug)?/} ( )du - fNG,’lﬁT’i (g)

> g dog,eso) = [

EPH(F)\Gr(F) U]
We then formally have that 1 <r <n
ZrJrl(S’f) :ZT(Saf)+FT(Saf)a 7,'+1(57f) :Z;(Saf)_FF;’(Saf)a (451)
where
F.(s, :/ fnve g )pe (h)|det h|*dh,
SN = iy Ut g, (It
and
1
Fl(s, f) = / / (f 1) G hy| 1,1 h | |det h|*dh
9 ()N (NG (8) Mt en() 1Y 1
1,
= fye G h,h| =z 1,,— det h|*""dh
/QAanmxAAGmA>[;mWIDXAAf NGt U ' |

To verify (4.5.1), we need to show that:

Lemma 4.5.2. The integral defining F,.(s, f) and Fl(s, f) are absolutely convergent when
Re(s) > 0.

Assume Lemma 4.5.2 for now, it remains to show F,.(s, f) = F/(s, f) = 0 for Re(s) > 0
and 1 < r < n. Note that F,.(s, f) =0 (for any f and v) implies F](s, f) = 0. We now prove
that Fy.(s, f) = 0 for Re(s) > 0. We temporarily denote by P, the parabolic subgroup of G
with Levi component (G, X Gp—y) X (Gr X Gpim—r)-

(fne, wue, (9)

7+1

_ 1, 1, -1 / /
a /[Nnr] /[Nrrz+nr] fPT ((( ’LL) 7 ( UI>> g) ¢Nn_r (U) wNm-Hl_r (u )dUdu .

Let Q. be the parabolic subgroup of G,, with Levi component G, X G,,_,. Using the Iwasawa
decomposition G, (A) = Q,(A) K, we can write F,.(s, f) as

/Gr] /n s A)\Gn —r A) / n /[Nn T] /[Nn+m T‘
h s—n+r
h h 2n—2r+m
R(k ’ B 5o [ (4.5.2)
e ( “hn—r> A (hn i ) ; ( hn—r)

2n+m)s+rm

(et Ay | 3nmrmn du! dudkdhy_, dhy.
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Fix N sufficiently large. By (2.3.4), for Re(s) > 0, we have [Mp,] > m — fp (m)dp,(m)® €
L?V’XMPT([MPTDOO‘ We write an element of [Mp | as (h,,x,hl.,y) € [G,] X [Gph—r] X [Gy] X
[Grtm—r]. By Lemma 2.5.3, Lemma 2.5.4 and the definition of Rankin-Selberg regular, for
any (z,y) € [Gn—r] X [Gnim—r], (hr,h.) = fp.(he,x, bl y)op. (he,x, bl y)® lies in sum of
L?va([Gr x G;])>°, where x = (xr, x.) with x, # x,/. Therefore, the integration of (4.5.2)
over [G,] already vanishes. This finishes the proof.

It remains to prove Lemma 4.5.2. We use the notation from Lemma 2.3.5. Let [ denote

the map
n—1 m+4n—1
/ /
(u,u') € Np, — — Z Ujji+1 + E Ui it1s
i=r+1 i=r+1

when r = n — 1 or n, the first term is understood as 0. Then (fNG+ ,w') o, = INp, - Using

1 T

Iwasawa decomposition, the integral defining F.(s, f) is bounded by

/[Gr] /[Gl}nr /Kn e, ((h t) k;)

Note that there exists Ny > 0 such that

—1
h g N,

By Lemma 2.3.5, the integral (4.5.3) is essentially bounded by

—cN -1
n—r 3 3 3 h h ) .
Y | (R A So. et hf*ldet " ded,
[Gr] J[Ga]m = 5 t t

=1

—1
50, (h t) dhdtdk. (4.5.3)

whose convergence follows from the same argument of §4.4.3. The convergence of F/(s, f) is
also similar to the argument in §4.4.3 and is left to the reader. U

4.6. A twisted version. In §4.6, we discuss a twisted version of results in §3.1 and §4.1. We
fix integers n > 0 and m > 1. Note that, in contrast with earlier part of §4, we allow m = 1.

1
4.6.1. A twisted version. Let wy = ( ) € G, be the longest Weyl group element. For

1
f € 8(]G)), we define the twisted Rankin-Selberg period as

t —1 g
Prs(f, @ / Ine v, (wz g~ wy, < 1m>> dg.

Let vy denote the character

m+4n—1
dj E Uji+1 + E UJ j+1
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and for f € T([G]), its Whittaker function is defined by
Wit = [ Sugunta) e

For f € T(|G]) and s € C, we put the twisted Zeta integral

Z%(s, f) =/ Wy <wet9_1wz7 (g >> |det g|*dg,
N (A\Gr (A) Im

provided by the integral is absolutely convergent.

Let x € X(G). Assume that y is represented by (M,7) where M and 7 are as in (4.1.1)
and (4.1.2). We say that x is twisted Rankin-Selberg regular, if for any 1 < i < 5,1 < j < ¢,
we have 7, ; # Tpym,. Let %RS C X(G) denote the set of twisted Rankin-Selberg regular
cuspidal datum. We write Tgg([G]) for T ([G]).

The proof of the following corollary is parallel to the proof of Corollary 3.2.4, and we omit
the proof.

Corollary 4.6.1. We have the following statements:

(1) For f € T([G)), there exists C > 0 such that the integral defining ZRS(s, f) is conver-
gent for Re(s) > C' and defines a holomorphic function on Hxc.

(2) The linear functional Prs on Sz ([G]) extends (uniquely) by continuity to a continuous
linear functional Prs on Tas([G])-

(3) For any f € Tgg([G]), the zeta integral Z(-, f) extends to an entire function. And we

have
Prs(f) = 20, f)
(4) For any s € C, the functional Z(s,-) on Tas([G]) is continuous.
By (4.2.4), we see that
(4.6.1) The map ZBS(-,-): C — Tf’{vs([G]), s (f — ZBS(s, f)) is holomorphic.

4.6.2. FEuler decomposition. Let S be a finite set of places of F, let 0 = o, X 0,4 be a
generic irreducible representation of G(Fs). For W € W(o,¢ns), we define local (twisted)
Rankin-Selberg integral of W [JPS83] as

Z85(s, W) ::/ W [ weh g, " |det h|*dh.
No (F5)\Gn (F5) L

The integral defining ng(s, W) is convergent when Re(s) > 0 and has meromorphic contin-
uation to C. Moreover, by [JPS83] and [Jac09], the quotient
Z§5(s, W)
Ls(s + 5,0 X Ongm)

is entire.
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Let P = P, X Ppym C G be a standard parabolic subgroup and let 7 = 7, K w4, be a
cuspidal automorphic representation of Mp. Assume that (Mp, ) gives a twisted Rankin-
Selberg regular cuspidal data x. Let II = Indggig =11, X IL,+m.
| S5 B o[ -3 We write E(p)(g) =

E(g,¢,0) for the Eisenstein series of . Note that E(p) € Tg¢([G]).
Let S be a sufficiently large set of places of F', that we assume to contain Archimedean

For future use in §6.4, we consider a section ¢ € A

places as well as the places where 11, ¥ or ¢ is ramified. We then have a decomposition
Wee) = WE(@’SWE(@) such that Wg(w)(l) = 1 and is fixed by K5.
Note that Wi,y s € W(lls,¥ns). By the unramified computation for the Rankin-Selberg

integral, we have

778 (s, E(p)) = (AS") " Z5S (5, Wi ) L3(5 — n, T1Y x TLi1) (46.2)

5. PERIODS DETECTING (n,n)-EISENSTEIN SERIES

5.1. Statements of the main results.

5.1.1. Notations. In §5, we will use the following notations. Let n > 1 be a fixed integer, and
let G = Ga),,. Let H = Spy,,, regarded as a subgroup of G. Let N denote the upper triangular
unipotent subgroup of G and let N := NN H.

Let @, be the standard parabolic subgroup of G with Levi component G,, X GG,,. Note that
QI := @, N H is the Siegel parabolic subgroup of H. The Levi component of QX consists of

Jtg=LJ
( g ), g € Gy,
g

For 0 < r < n, we write P, for the standard parabolic subgroup whose Levi component is
G77" x G x G77". Let N, denote the unipotent radical of P,. We denote by PH=pP.NnH.
Note that P, is the Borel subgroup of G and P{! is the Borel subgroup of H.

Let Po, denote the mirabolic subgroup of GLjs,, it consists of elements of GLo, with last row

elements of the form

In—r
(0,---,0,1). Let PQHT := Par NSPy,.. We regard Sp,, as the subgroup h of H,
ln—r
where h € Sp,,.. We hence regard PII as a subgroup of H via the embedding P C Sp,, C H.
Let A denote the BZSV quadruple [MWZ24] (G, H,std ®std",1). Let 1, denote the de-

generate character on N(A) defined by

Yn(u) =9 Z Wi i1
1<i<2n—1
i#En
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For 1 < r < n, we write ¢y, for the restriction of ¥, to N,.(A). For f € T([G]), we put
Pioslo) = [ Fmg)ust i

We write K for the standard maximal compact subgroup of H(A). For any semi-standard
parabolic subgroup @ of H, we have the Iwasawa decomposition H(A) = Q(A) K.

5.1.2. The period. For f € S([G]) and ® € S(Ag,), we define a bilinear map S([G]) x
S(Agn) — C by

P(f,®) = /[H} f(h)O(h, ®)dh.

By Lemma 2.3.3, the integral defining P is absolutely convergent and defines a continuous
bilinear map on S([G]) x S(Aa,).

5.1.3. Zeta integral. For every f € T(|G]), we associate the following degenerate Whittaker
coefficient

Vito) = | flugin(w)du
[N]
For f € T([G]) and @ € S(A2,) and A € a) ¢, we set

Z()\’ f7 (P) == / Vf(h)@(e2nh)e<)‘vHQn (h)>dh
Ny (A)\H(A)

provided by the expression converges absolutely. Denote the unique element in Ag, by a.
We define sy := —(\, a"). Therefore sy has the property

Jtg=1J
exp ((A,HQn ( I >>> = |det g|*,
9

thus inducing a linear map azgn c— C A sy,
The following two lemmas provide the convergence of zeta integral

Lemma 5.1.1. Let N > 0. There exists cy > 0 such that
(1) For every f € Tn([G]) and ® € S(Aay,), the expression defining Z (A, f, ®) converges
absolutely when Re(sy) > ¢y and defines a holomorphic function of A\ on the region
Re(sy) > en;
(2) For every ® € S(Agy) and A € afy ¢ with Re(sy) > cn, the functional f € Tn([G]) =
Z (A, f,®) is continuous.

Lemma 5.1.2. We have the following statements
(1) For every f € S([G]), @ € S(A2,) and A € afy ¢, the expression defining Z(X, f, @)
converges absolutely and defines an entire function in X;
(2) For every A € afy ¢ and ® € S(Agy), the functional f € S([G]) — Z(A, f,®) is
continuous;

Lemma 5.1.1 and Lemma 5.1.2 will be proved in §5.2.2 and §5.2.4 respectively.
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5.1.4. A-regular cuspidal datum. Let x € X(G) be a cuspidal data, let x*@n be the preimage
of x in X(Mg,) = X(GL,, x GLy,). We say that y is A-regular, if for any y’ € xMan is twisted
Rankin-Selberg regular in the sense of §3.2.5. The reader can check that this definition is the
same as the one given in (1.2.3). We remark that A here stands for the quadruple defined in
§5.1.1. Note that any regular cuspidal data is A-regular.

Let XA C X(G) denote the set of A-regular cuspidal data. We write Sa ([G]) (resp. Ta([G]))

for Sx, ([G]) (resp. Tx, ([G))-
5.1.5. Main results. For ® € S(Aay,), we denote by ®” € S(A,,) the restriction of ® to {0} x A,,.

Theorem 5.1.3. We have the following statements
(1) For any ® € S(Agy,), the restriction of P(-,®) to SA([G]) extends (uniquely) by con-
tinuity to a functional P* on Ta([G]).
(2) For any f € Ta(|G]) and ® € S(Ag,), the map A — Z(X, f,®) extends to an entire
function in X € af, . Indeed, for any k € Ku, (R(k)f)q.lic.xc,) € Tas([Gn x Gal),
and we have

ZO\, £, ®) = /K 7R (sy 4+ % (RE) g, (R(K)®))dk, (5.1.1)
here (R(k)f)q, means (R(k)f)Qn’[anGn}-

(3) We have
P(f,®) = Z(0, f, D).
(4) The bilinear map TAa([G]) x S(Aa,) — C, (f, @) — P*(f, ®) is continuous.

5.2. Convergence of Zeta integrals.

5.2.1. More zeta integrals. For f € S(|G]) and ® € S(Agy,) and 0 < r < n. We define

Zr(fv (I)) = fNr,’t/)(h)dh

/NT(A)Pﬁ(F)\H(A)
Note that when r =0, Z,(f,®) = Z(0, f, ®).

Lemma 5.2.1. For every 0 <r <n and f € S([G]) and & € S(Aay,), the integral defining
Zy(f, ®) converges absolutely.

5.2.2. Proof of Lemma 5.1.1.

Proof. By the Iwasawa decomposition H(A) = PH(A)Ky, we need to show the existence of
cy > 0 such that

[ D e[ o) S (Dlas. -+ an) !
KH (AX)TL

n (5.2.1)
[Tle:l" B day - - - dandk
=1

48



when Re(s) > cy. Where
D(ay,--- ,a,) = diag(ay, -+ ,an,a, "+ ,a7t).

The modular function is given by
n
5P({'I (D(a17 T 7an)) = H|ai’2n72i+2‘

We apply Lemma 2.3.5 (2), then for every N7 > 0, we have

n—1 n
- —N
Vi(D(ar, - s an)k)| < [ Nasa 12N TT el &Y
i=1 i=1

for (k,ay,--- ,a,) € Kg x (A¥)". Note for every Ny > 0, we have |®(a; 'eank)| < [lay |z
for (k,a1) € Kg x A*. Note for every Ny > 0, there exists N; > 0 such that

n—1

Nij,,—1) =N N

[T a5 e ™ <<HHa i

=1 i=1
Then for every No > 0, (5.2.1) is essentially bounded by

H/ |az||G1 ||a 1||AN2|G |—Re(s) (2n—2i+2)dai (522)

Since there exists M > 0 such that ||a;|l¢, < max{|a;|™,|a;|~™?}, the convergence of (5.2.2)
follows from Corollary 2.2.5. O

5.2.3. Proof of Lemma 5.2.1.

Proof. We assume that r > 0, the case r = 0 will be covered in Lemma 5.1.2. By the Iwasawa
decomposition H(A) = PH(A)Ky, we need to show the convergence of

Jo Lo L, (D1, e, W) (a7 )
K J(ax)n=r JPL(F)\ Spy,(A) (5.2.3)
Spr(D(ay, -+ ,an—p, h))"'dhda; - - - day_dk,

where
D(ab'" 7an7r7h) = diag(al,--- 7anfr7h a. ceLa 1).

7n’r‘7

and the modular function dpu is given by

5PTH<D(Q17 e pr, h)) = H|ai|2n+2—2i.

We now apply Lemma 2.3.5 (1). For this, we note ¢y, = 1 ol, where [ : N, — G, sends
u € Ny to ur 2+ - Up—rp—r+1 + Untrntr+1 + - + U2n—12,. One can check that

n—r—1

II llaiaiilallan—rearhlla, < | Ad*(D(ar, -+ . an—r, b))V, -
=1
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Therefore, by 2.3.5 (1), we can find ¢ > 0 such that for every Ni, Ny > 0 we have

|fNr,w(D(ala"' ’anfrah)k”
n—r—1

—2N. —N -
< H laia H—IHA Hlan— re?rh”& HHGZHGI QHhHGQf(sPT( (a1, an—r,h)) eN2
=1

for (kyay1, -+ ,an—r,h) € Kg x (A*)" x Spy,.(A). The modular function is

r

Sp.(D(ay, - an—y,h)) = [ Jlas*" 4.
=1

On the other hand, for every N; > 0, we have
(R(F)®)(ay ean)| < a1, (k1) € Ku x A%

One can check for every N3 > 0, there exists N7 > 0 such that

n—r—1 n—r

-1 =N —N- —1—N: —1—N: —N.
I a1z lan—rearllz oy ™ << T llag M E™ learhl,?
i=1 =1

Then we deduce the existence of ¢ > 0 such that for every N3, Ny > 0, (5.2.3) is essentially
bounded by the product of

/ L (5.2.4)
Pg(F) P (A)

T

and

n—r
H / Haz‘_l H&N?) ‘ai|7(4n74i+2)cN2*(2n72i+2)dai (525)
. AX

By Lemma 2.3.3, there exists Ny > 0, such that for every N3 > Ny, we have

/ 1Al a2
P31 (F)\Spy,.(4)

o L I S el R R
[SPQT] v€F2T\{0} [Sp2r}

Therefore, by Corollary 2.2.5, the integral (5.2.5) and (5.2.4) are absolutely convergent when
N3 > Na > 0. O
5.2.4. Proof of Lemma 5.1.2.
Proof. By the same argument of the proof of Lemma 5.2.1, the integral defining Z(\, f, ®) is
bounded by

n

H / Ha‘_IHXN?) ‘ai|—(4n—4i+2)cN2—(2n—2i+2+Re(sA))

(2 bl

which is absolutely convergent when N3 > N > max{0,Re(sy)} by Corollary 2.2.5. O
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5.3. Unfolding.

5.3.1. Main result. In §5.3, we prove the following proposition.
Proposition 5.3.1. For any f € SA([G]) and ® € S(Ag,), we have
P(f,®) = Z(0, f, @)
5.3.2. A result of Offen. We say a cuspidal data x € X(G) is even, if x can be represented by

(M, ), where
M = GL;,, x GLp, X --- x GL,, x GL,,
and
T=mXmX-- K, X

according to this decomposition. We denote by Xeven the set of even cuspidal datum, and

(

denote its complement by X¢, .-

Theorem 5.3.2 (Offen). The symplectic period is vanishing on Sxc . ([G]). That is, for any
f € Sxg,, (1G)),

/‘fMMh:Q
()

Proof. 1t is proved in [Off06, Proposition 6.2, Theorem 6.3] (see also [LO18, §7.1]) that if
X € X(G) is not even and f € O, is a pseudo-Eisenstein series, then f[H} f(h)dh = 0. By
Lemma 2.5.2, for any f € S, ([G]), we have f[H] f(h)dh = 0.

([G]), by Theorem 2.5.1, f can be written as 3, cy.  fy, where
fx € S([G]) and the sum is absolutely convergent in S([G]). The theorem follows. O

Finally, for any f € Sxec

even

Corollary 5.3.3. Let a > 2b be integers and x € X(G,). Let P = MN be a standard parabolic
subgroup of Gy such that Gop is a factor of its Levi component M. For x' € X(Mp), denote
by Xy, € X(Gap) the component of X' at Gap. Suppose that for any x' € XM, X, is not even.
Regard Spy, C Gap as a subgroup of M, then for any f € Sy([G4]), we have

/ Fo(h)dh = 0.
[Spap)

Proof. Note that dp is trivial on Spy,, it follows from Lemma 2.3.1 that the restriction of fp
to [Spyy] belongs to S([Spy]). The integral hence converges absolutely. By Lemma 2.5.3, we
have fp € T, ([Galp). Let & € C°(ap) be a compactly supported smooth function on ap with
x(0) = 1. By (2.3.3) and Lemma 2.5.6, we conclude that

(ko Hp) - fp € Ty([Galp) NS([Galp) = Sx([GalP).
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By Lemma 2.5.4 and Lemma 2.5.5, the restriction of (k o Hp) - fp to [Ga)] belongs to
D exM Sy, ([G2]). It follows from Theorem 5.3.2 that

/ fp(h)dh = / (k0 Hp)(h) fp(R)dh = 0.
[Sp2b]

[Spap]

5.3.3. Proof of Proposition 5.3.1. Proposition 5.3.1 is implied by the following Lemma
Lemma 5.3.4. For any f € SA([G]) and ® € S(Agy,), we have

Proof. We show that Z.(f, ®) = Z,11(f, ®) for 0 < r < n—1, the proof of Z,(f, ®) = P(f, )
is similar and is left to the reader.

Let » > 1, we denote by U, the unipotent radical of the parabolic subgroup of GLo, with

177/—7"
Levi component G x Go,_9 X G1, which we regard U, as the subgroup U U €
Ln—r

U, of G. Let UM := U, N H. Note that U is a normal subgroup of U,. By an abuse of
notation, we write 1 for the character u — 1 (u12 + u2,—12,) of Up(A).

By Fourier inversion on the compact abelian group Uy41(A)/Up41(F)UHE ;(A), we have

/ " SN (uh)dh = (fN, 1 0)u,g, + Z (N1 U1 0
(U44] YePIL(F)\ Spy,.(F)

for all h € H(A), where we have set

() (9) = / I3y (),
[Ur]
e Vsl®) = [ Frsolug) (e = f (o)

Therefore, we formally have

Zr(fa q)) :ZT+1(qu))+Fr(f7q)) (531)

where we have set

F(f.®) = (SN 2100, () B (e ).

/szr-(F)Nﬁ (A)\H (A)
To verify (5.3.1), we need to show

Lemma 5.3.5. For every 0 <r <n—1, f € S(|G]) and ® € S(Az,), the integral defining

E.(f,®) converges absolutely.
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Proof of Lemma 5.3.5. By the same arguments as the proof of Lemma 5.2.1, there exists ¢ > 0
such that for every N, Ny > 0, the integral defining F,.(f, ®) is essentially bounded by the

product of
[ mgean
[SPZT}

and

n—r

H/ ||a¢||5fN2||a;1||1§N|ai|_(4”_4i+2)CN2_(2”_2i+2)dai-

=1 AX
We can take N > Nj > 0 such that these integrals converge. O

Let R, be the standard parabolic subgroup of G with Levi component G,_, X Gor X Gp—;.
Let V}, denote the upper triangular unipotent subgroup of Gi. Then

1

u
(fNT.H,w)UT(g)—/[V ]/[ }er 1oy g | v (ur)y ™ (ug)dug dus.

U2

Let RY := R. N H. Using the Iwasawa decomposition H(A) = RY(A)Ky, we can write
P}(fv¢ﬁ as

uig

Ra- [ [l :
Vi—r(A\Gr—r(A) J[Spa,] / K J [Vier] / [Vir—r]
1

t, —1
ugJp—r In—r

g
5R£1 h duidusdkdhdg.
Jﬁ—rt 71Jﬁ—r

Therefore the vanishing is implied by

Tn—r
/ fr. h dh (5.3.2)
[SPQT]

Tn—r

vanishes for any f € SA([G]). It suffices to prove that for any A-regular cuspidal data and
any f € Sy([G]), the integral (5.3.2) vanishes. However, one can check directly that for any
X = (x1,x2,x3) € XMPr C X(Gpr X Gor x Gp_y), X2 is not even. Therefore, the integral
vanishes by Corollary 5.3.3. g

5.4. Proof of Theorem 5.1.3. Let .’{AA/[Q” denote the preimage of XA in X(Mg, ). By the
definition of A-regularity, we have %ZIQ” C Xgg(Mg,) (indeed it is easy to see that this is an

equality).
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Let f € TA([G]) and ® € S(Ag,), By the Iwasawa decomposition H(A) = QX (A) Ky, when
Z(\, f, ®) is absolutely convergent, we have

K J Nn(A)\Gr(A)

From the definition of the degenerate Whittaker coefficient, we have

/ /
M,
Vi 9 =W, " g . 9.9 € Gp(A)
g " g
Then we can write

z0nf0) = [

Kpu

Jtg=1J
9 g) ®(egng)|det g[S T dgdk. (5.4.1)

Z%S(sx +n+ 3, (RIIBY, (R(F)Flo,)dk,  Re(ss) > 0.

Then it follows from Corollary 3.2.4 that Z®S(sy +n+ 3 (R(k)®), (R(k)f)q,) extends to an
entire function of s). Applying Lemma 2.7.1 (2) with

W =8(A,), V="Tg(GnxGyh]), X=KugxS(Ax)xTa([G]),
the holomorphic map

S€C (st nt 5,-) € B(S(An), Teg([Gn X Gu),

and continuous maps

(s,k, f,®) € C x Ky x S(Agn) X TA([G]) — (R(k)®)" € S(A,,),
(5,k, [, ®) € C x K x §(A2n) x TA([G]) = (R(k)f)q, € Tag([Gn x Gh))

we deduce that the map

(5,k, £, ®) € C x Kz x S(Agy) x Ta([G]) = Z%(s + 1+ % (R(E)DY, (R(K)f)o,) € C

is continuous and holomorphic in the first variable. Then it follows from Lemma 2.7.2 that
the integral

| 7 nt 5 (RGP, (RE) Do, )k

is holomorphic in s € C. Therefore Z(A, f, ®) extends to an entire function. This proves (2).
Lemma 2.7.2 also implies Z(0, f, ®) is continuous in (f, ®) € Ta([G]) x S(Agy). Moreover by
Lemma 5.1.2 and Proposition 5.3.1,

Z(07f7®) = P(f7®)‘
Therefore for ® € S(Agy,), the f — Z(0, f, ®) provides a continuous extension of P(-, ®) to
Ta([G]), this proves (1),(3) and (4).

5.5. Periods of A-regular Eisenstein series.
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5.5.1. Local zeta integral. Fix a place v of F, let IIj; = II X II' be an irreducible generic

representation of Mg, (F,). Recall the space Indgff?}l)W(HM,wv) defined in §2.6.2. For

WM e Tndg ) W(ITy, 1,) and ® € S(Fy20) and A € 0y, we define

Z,A\ WM @) = WM (B)® (eanh)e™Han W) dp,

/NH(FU)\H(FU)

provided by the integral is absolutely convergent.

Lemma 5.5.1. (1) For any WM ¢ Indgif”pl) and ® € S(Fypn), the integral defining
Zy(\, WM @) is absolutely convergent when Re(sy) > 0 and has a meromorphic con-

tinuation to a*Qn C-

Proof. Using the Iwasawa decomposition, we can formally write Z, (A, WM, ®) as

t —1
ziwiay = [ f REW (797 ) (RO®)Y (cag)ldet g+ dgdk
KH,’U n(Fv)\Gn(Fv) g

~ 1
= [ Bt 5 (RO ROV s, 1)
H,v
(5.5.1)

The convergence of the zeta integral hence follows from the convergence of the usual Rankin-
Selberg integral [JPS83], [Jac09].

When v is non-Archimedean, by (5.5.1), Z,(A, WM, ®) is essentially a finite sum of twisted
Rankin-Selberg integral, hence has meromorphic continuation. We now assume v is Archimedean.
Let O(C) denote the entire function on C with the usual compact-open topology. By [Jac09,
Theorem 2.3], the map

N N ZRS Lo w
W(HBTIR -5, ) x S(Fon) = O(C), (W, ') — (s LG lsAnts )> (5.5.2)

L,(s+ 1,11V x II')
is continuous. Therefore, the map
Z8S(s+n+ L, (R(k)®)", R(k)W)

Ls(s+ 1,11V x IT")

Kpg, = OC): k—
is continuous. Combining with (5.5.1), the meromorphicity follows from Lemma 2.7.2. O

We finally remark by the same argument, Lemma 5.5.1 still holds if we replace v by a finite
set S of places of F.

5.5.2. Fized points. Let P = MpNp be a standard parabolic subgroup, we write Mp as
Gpy, X -+ X Gp,. Let m = m X --- K7, be a cuspidal unitary automorphic representation
of Mp (central character not necessarily trivial on AS}) such that the cuspidal datum x

represented by (Mp,m) (see §1.2.2) is A-regular.
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We write Fix(m) for the set of permutations o : {1,2,--- ,k} — {1,2,--- ,k} such that
there exists 1 < ¢t < k with:
(1) 1)y + -+ Moy = M N g1y + 0+ Ny = N
(2) o(1)<---<o(t)and o(t+1) < --- < a(k).
We also introduce the following notations

(1) P, the standard parabolic subgroup of Ga,yrm, with Mp, =G x - X Gy

Mo (1) o(k)?
(2) Py (vesp. P, ) the standard parabolic subgroup of G, with Levi subgroup Gy,
cee X Gn(,(t) (resp. Gno-(t+1) X oo X Gn[,(k)),

(3) 7o = To(1) X -+ - B 75k, which is a cuspidal automorphic representation of Mp,,

o(1) X

(4) Ton = To(1) X... &ﬂa(t) and 7T?,m = To(t41) X... gﬂa(k)-

(5) Moy = Ind5" ) 7y and 0, = Indg 0 g

5.5.3. L-functions. Let o € Fix(m), we put
L(s, T, X) == L(s,1,p x T30 ) L(s, 117, x IIL, ).
5.5.4. Periods of Eisenstein series. Let ¢ € II = Indggﬁ;ﬂ' = Ap, and write E(p)(g) =
E(g,p,0) for the Eisenstein series of ¢. Then E(p) € Ta([G])-
Theorem 5.5.2. We have
P(E(p)) =(AF)'L(1,m,05) " > Ls(l,TOX)LS(l,wU,ﬁ;a)ZS()\,@S,QyQ”(Nms(a)W%)).
o€Fix(n)

Recall the L-function L(s,m,n, defined in (2.4.3).

Proof. By the constant term formula for Fisenstein series, we have

(RR)E@). = Y E®(M(w)R(k)p), ke K.
weW (P;Qn)

By Theorem 5.1.3, we can write

P (E(p), @) :/K Z5S(n+ = (R(IDE(9))q... (R(K)2)’)dk

2
e b (5.5.3)
= > [ 2 5 BT O1@)RK)). (RO)D) )k
weW (PiQn) 1
where the second equality holds because for each w € W (P;Q,,) and each k € Ky, E9" (M (w)R(k)p) €

Trs((Mq,.])-

Assume that there exists 1 < i < j < k such that 7, = 7;, then by the computation of
Fourier coefficient of Eisenstein series [Sha81, §4], the Whittaker function of EQ (M (w)R(k)yp)| (Mo
vanishes for any k € Kp, therefore P*(E(y), ®) vanishes. Therefore, from now on, we assume
that ©; # m; for any ¢ # j. In particular, for any finite subset S of places of F', the partial

L-function L3(s, 7 x m;) is regular (and non-vanishing) at s = 1.
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Let S be a sufficiently large finite set of places of F', which we assume to contain Archimedean
places as well as the places where II or v is ramified. We also assume ¢ is fixed by K5 and ® can
be written as ® = ®g®>, where ®° is the characteristic function of O%Qn and g € S(Fs.2n).

Note that there is a bijection between and W (P; Q,,) and Fix(7), where each w corresponds
to the o such that wMpw™! = Mp,. In the following, we fix an arbitrary w € W (P;Qy),
and corresponding o € Fix(m). It’s clear that under this correspondence, one can identify the
representation wm of wMpw ™! with the representation 7, of M Po-

Note that the restriction of E9~(M(w)R(k)y) to [Mg,] belongs to |-|211,, K H_%H;,n,
then it follows from (3.2.5) and (5.5.1) that

~ 1 *\— Mg,
/K 2t 3, (RO®) B9 (M) R = (A7) (1115 x1T, ) 250, Wi 0
(5.5.4)
By (2.6.3) and (2.6.4), we have
1 L(1, 7,05
WMQn — ( Pa') MQn (N7T7S(w)Wé\’4SP)

EQn (M(w)g),S — L3(1, T, p, JLS(L, 7, 05 ) L(1,m0p) °

Ls(l Ho’n X H;"\{l) ~ Q M
— ) s - 3 L 1’ ’n* Q n N W P
L(1,7,07) s(1, 7o PU) §" (Nrs(w) ©,8 )

Therefore we can write the left hand side of (5.5.4) as

1 LS(LHX,n X H;,n)LS(LHg,n X Hir,n)
L(1,7,np)

(A% Ls(l,wg,ﬁ;G)Zs(O,QSQ”(Nms(w)W%P),<I>).

This finishes the proof O

6. PERIODS DETECTING (n,n + m)-EISENSTEIN SERIES

6.1. Statement of the main results.

6.1.1. Notations. In §6, fix integers n > 0 and m > 1. Let G = Gap4m, and let H = Sp,,,. We
h
regard H as the subgroup 1k h € H of G. We will study period related to the quadruple

A=Ay, = (G, H,0,tym), where ¢y, : SLy — G is the representation 1" @ Sym™ ! of
SLs.
Let N = Noy,, denote the upper triangular unipotent subgroup of G and let N¥ := NNH.
For 0 < r < n, let P, := P be the parabolic subgroup of of G whose Levi component
is isomorphic to G7~" x G, x GYT™7". Let PH := P. N H, it is a parabolic subgroup of H

whose unipotent radical is N := N, N H. The Levi component of P is Sp,, xG7~".
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Let Po, denote the mirabolic subgroup of GLsg,, it consists of elements of GLo, with last
1'7'
row (0,---,0,1). Let Pg := P2, N Spy,. We regard Sp,, as the subgroup h of H,
1r
where h € Sp,,.. We hence regard P4! as a subgroup of H via the embedding P4 C Sp,, C H.
Let 1, denote the degenerate character

N(A)Su— v Z Wi i+1
1<i<n+m—1
i#n

of N(A) which is trivial on N(F).

We also denote by N,;1 the unipotent radical of the parabolic P,4+1 of G whose Levi
component is Gpq x G771

For 1 <r < mn+ 1, We write ¢y, for the restriction of ¥, to N,(A). For f € T([G]), we
put

Proslo) = [ Fmg)ust i
6.1.2. The period. For f € S([G]), we define the period P := Pa on S([G]) by

P(f) = /[H] FNor ()R

By Lemma 2.5.3, the integral

/ / | f(nh)|dndh
[H] J[Nnt1]

is absolutely convergent. Hence the integral defining P(f) is absolutely convergent.

6.1.3. Zeta integral. For f € T(|G]), we associate the degenerate Whittaker coefficient
Vilg) = [ flug)ty " (u)du.
[N]
Note that Vi(g) = fn,,v(g9). Let @, denote the parabolic subgroup of G of type (n,n+m).
For f € T([G]), and for A € a7, , we set

Z\ f) = / Vi(h)eMHan () gp,
Ner(A\H(A)

provided by the integral is absolutely convergent. Note that Z(\, f) only depends on sy :=
(\,aV) eC.

Lemma 6.1.1. We have the following statements:

(1) for any \ € ag, c: the integral defining Z(A, f) is absolutely convergent, and it defines
an entire function on ag, ¢,

(2) for any \ € ag, c: the map f— Z(\, f) is continuous on S([G]).
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Lemma 6.1.2. Let N > 0, then there exists cy > 0 such that

(1) The integral defining Z(\, f) is absolutely convergent when f € Tn([G]) and Re(sy) >
cn, and defines a holomorphic function of A on the region Re(sy) > cn.
(2) For fix X such that Re(sy) > cy. The map Tn([G]) 2 f+— Z(A, f) € C is continuous.

The proof of the two lemmas is parallel to proofs given in §5.2, so we leave it to the readers.

6.1.4. A-reqular cuspidal datum. Let x € X(G) be a cuspidal data, let xMen be the preimage
of x in X(Mg,) = X(GLy, X GLy ). We say that x is A-regular, if for any x' € xMen is
twisted Rankin-Selberg regular in the sense of 4.6.1. We remark that A here stands for the
quadruple defined in §6.1.1. Note that any regular cuspidal data is A-regular.

Let XA C X(G) denote the set of A-regular cuspidal data. We write Sa ([G]) (resp. Ta([G]))

for Sx, ([G]) (resp. Tx, ([G])).
6.1.5. Main results.

Theorem 6.1.3. We have the following statements
(1) The restriction of P to SA(|G]) extends (uniquely) by continuity to a functional P*

on Ta([G)).
(2) For any f € TA([G]), the map X — Z(A, f) extends to an entire function in A € afy .
Indeed, for any k € Ky, (R(k))QuliGnxGnim] € Tag([Gn X Gniml]), and we have

Z\ f) = /K Z8(sy +n+1,(R(k)f)g,)dk, (6.1.1)

here (R(k)f)q, means (R(k)f)Qn’[anGner]
(3) We have

P(f) = Z(0, f).
The proof of the Proposition will be given in §6.3.
6.2. Unfolding. In §6.2, we show the following result:
Proposition 6.2.1. For any f € SA([G]), we have
P(f) = Z(0, f).
6.2.1. More zeta integrals. For f € S([G]), we put

Zy(f) = / IN, ., (h)dh.
NH(AYPL(F)\H(A)
Note that Zo(f) = Z(0, f).

Proposition 6.2.2. For any f € S([G]), the integral defining Z,(f) is absolutely convergent.

Proof. The proof of the proposition follows the same line of the proof of Lemma 5.2.1, and

we omit the proof. O
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6.2.2. Proposition 6.2.1 will directly follow from the following lemma.

Lemma 6.2.3. For any f € SA(|G]), we have

Zo(f) = Z1(f) = -+ = Zn(f) = P(f).

Proof. 1t suffices to prove Z,(f) = P(f) and Z,(f) = Z,41(f) forany 0 < r < n —1. We
prove the latter, and the former one follows from a similar argument.

Let » > 1, we denote by U, the unipotent radical of the parabolic subgroup of GLo, with

17’L—7’
Levi component G X Go,r_9xG1, which we regard U, as the subgroup U SU €
1n+mfr

U, of G. Let UY := U, N H. By an abuse of notation, we write 9 for the character
u — P(uig + ugr—1,2,) of Up(A).

Using Fourier analysis on the compact abelian group U,41(A)/UX | (A)Up41(F), we can
write

/[ INaw(uh)dh = (fN, U, + > (N1 ) U1 -

Hl
= yEPH(F)\Har (F)

where

(N1 U, (9) = /[U ] SNy (ug)du,

(N1 0)U, 0 (9) = o TN (ug)(u)du = f, 4 (9)-

Therefore, we formally have

ZrJrl(f) :Zr(f)"i'Fr(f)a (6'2'1)
where

E.(f) = (fNs10)u, (R)dh.

/SPQT(F)NT(A)\H(A)

To verify (6.2.1), we need to show that the integral defining F.(f) is absolutely convergent.
The proof follows the same line of the proof of Lemma 5.3.5, and we omit the proof. Therefore,
we are reduced to show that for 0 < r <n — 1, we have F,.(f) = 0.

Let R, denote the parabolic subgroup of G with Levi component Gy, X Gor X Gppm—r. Vi

denote the upper triangular unipotent subgroup of G;. Write Rﬁ = R, N H. Using Iwasawa
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decomposition H(A) = RH(A)Ky, we can write the integral defining F,(f) as

uig-
h
F’r‘(f):/ / // / er : I tg=lJ k
Vn—r(A)\Gn—T(A) [SPQT] K [Vn—r] [Vn+m—r] U n—r g n—r
Im

-1

S h duydusdkdhdg.
' A

Therefore, the vanishing of F,.(f) is implied by

1n—r
/ fr. h dh (6.2.2)
[SPQ’I‘] 1
n+m-—r

vanishes for any f € SA([G]). This follows from Corollary 5.3.3. O

6.3. Proof of Theorem 6.1.3. Let %JXQ” denote the preimage of XA in X(Mg, ), then we
have %]XQ” C Xgg(Mq,)

Therefore, it follows from Lemma 2.5.3, for any £k € Ky and f € Ta(|G]), we have
RO g, € Teg(IM@).

Using Iwasawa decomposition as in (5.4.1), we see that for any f € Ta([G]), the equality

ZIA ) = /K Z8(s + 1+ 1, ((RE) o)l )k (6.3.1)

holds when Re(sy) > 1.

By Corollary 4.6.1, for f' € Tg5([G]), ZBS(s, f') has holomorphic continuation to s € C and
is continuous in f’. Therefore, Z8S(sy +n+ 1, (R(K) ). )nmg,) is defined for any A € a, .
We argue as in §5.4 that the right hand side of (6.3.1) is holomorphic in A, and for any
A€ ay ¢ [ Z(A f) is continuous in f € TA([G]). Therefore (2) is proved.

By Proposition 6.2.1, the functional Z(0,-) on Ta([G]) coincides with P on the dense
subspace SA([G]). Therefore f — Z(0, f) provides an extension of P to Ta([G]), (1) and (3)
then follow.

6.4. Periods of A-regular Eisenstein series.

6.4.1. Local zeta integral. Fix a place v of F, let Iy = II,, X II,,4,, be an irreducible generic
representation of Mg, (F,). For WM ¢ Indgff})v) W(Ips, ) and A € ag,, ¢, we define

Zy(A, W) = / WM (h)eMHan(h)) qp,
N (Fu)\H(F,)

provided by the integral is absolutely convergent.
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Lemma 6.4.1. For any WM ¢ Indggﬁj), the integral defining Z,(\, WM) is absolutely

convergent when Res(sy) > 0 and has a meromorphic continuation to ag, c-

We omit the proof which is parallel to the proof of Lemma 5.5.1. By Iwasawa decomposition,
we can write

Zy(\ WM = /K 78 (sy + 0+ 1, (ROWM)are () (6.4.1)
H

6.4.2. Fized points. Let P = MpNp be a standard parabolic subgroup, we write Mp as
Gpy, X -+ X Gp,. Let 1 = m X --- K7, be a cuspidal unitary automorphic representation
of Mp (central character not necessarily trivial on AS}) such that the cuspidal datum x
represented by (Mp, ) is A-regular.

Recall the set Fix(m) defined in 1.2.3.

(1) P, the standard parabolic subgroup of Gay s, with Mp, = Gna@) X oo X G”o(k)’

(2) Py (resp. Py pim) the standard parabolic subgroup of Gy, (resp. Gpr,) with Levi
subgroup G, ) X -+ X Gn_ () (vesp. Gn, ) X - X Gp_ ),

(3) o = To(1) M- - B 75 (1), which is a cuspidal automorphic representation of Mp,,

(4) Ton = 7TU(1) X..-X ﬂa(t) and Ton+m = 7ra(t+l) X.. K 7ra(k)~

Gn(A Grnym (A
(5) Iyp = Indpa’i(l)%) Tom and gyt = IndPg,:ﬂi(z)%) Ton-+m-
For o € Fix(m), we put

L(s, T, X) == L(s,11} ,, X Wgpam) L(8, oy X TLY 110

o,n+m

6.4.3. Periods of Fisenstein series. Let ¢ € II = Indgiggmﬂ' = Ap, and write E(¢)(g) =

E(g,¢,0) for the Eisenstein series of ¢. Note that E(p) € Ta([G]).

Theorem 6.4.2. Let S be a sufficiently large finite set of places of F', that contains Archimedean
places and the places where I1 or 1) is ramified. We also assume that o is fived by K5, and
we decompose Wsé‘/[P as WéWP = W(%SPW%P’S. Then period P*(E(p)) is equal to

(AL 7R Y LS IL T, X) L(1, 7o, B, ) Zs(0, Q5 " (Ne s (0)WA). (6.4.2)
o€Fix(n)
Proof. The proof is parallel to the proof of Theorem 5.5.2, so we will be brief.
By the constant term formula for Eisenstein series andTheorem 6.1.3, we can write

PUBG) = Y [ 2% L B (MK (6.4.3)
weW (P;Q,) ” KKH

If there exists 1 < i < j < k such that 7 = 7;, then both side of (6.4.2) is 0, therefore
from now on we assume that m; # m; for i # j.

Let S be a sufficiently large finite set of places of F', which we assume to contain Archimedean
places as well as the places where II or 1 is ramified. We also assume ¢ is fixed by K5. Note

that there is a bijection between W (P;(@),) and Fix(7), where each w corresponds to the
62



o such that wMpw™! = Mp,. In the following, we fix an arbitrary w € W(P;Qy), and
corresponding o € Fix(r).

Note that the restriction of E@» (M (w)R(k)¢) to [Mg, ] belongs to ].|"+Tm1‘[07n®].]—31‘[07n+m’
then it follows from (4.6.2) and (6.4.1) that

/ ZRS(” + 11 EQ" (M(w)R(k;)SO>)dk = (Ai}*)_lLs(L Hg,n X Hcr,n+m)ZS(Ov Wﬁ?J)E(W),S)
K
" (6.4.4)
By (2.6.3) and (2.6.4), we have
LS, x I )
Mg, . y Hlon o,n+m ~ Qn M

Weelwwiors =~ L1, 7 7m) Ls(1,mq,0p, Q5™ (Na s (w0) W ) (6.4.5)

The theorem then follows from (6.4.3), (6.4.4), and (6.4.5). O

7. TRUNCATION OPERATOR AND THE REGULARIZED PERIOD

7.1. Notations. Let H = Sp,,. We fix an upper triangular Borel subgroup P of H, let
ap = ap, and Ay = Apr

Let G = Gapq1. For a semi-standard parabolic subgroup P C G, let aJIS be the subset of
X € ap such that (X, ) > 0 for any o € Ap.

For any semi-standard parabolic subgroups P C @Q, let ?g be the usual characteristic
function of a cone on ap defined in [Art78, §5].

7.2. The case m = 1. The case m = 1 is taking the Sp,,, period of an automorphic form
on GLoyy1. In the work [Zyd19] of Zydor, he defined a regularized period of an automorphic
form on a reductive group over any reductive subgroup.

Let G = Gopt1 and H = Sp,,. Zydor’s regularization was written down explicitly in
[LWX25, §3.2] in this case, which we also briefly review here.

Let F' be the set of standard parabolic subgroups of H. For each P’ € F’, there is a unique
semi-standard parabolic subgroup of G such that af, N af, # @. If we write P’ = P()) via
the dynamical method, where A is a cocharacter of H. Then P can also be characterized
as P = P()\Y), where A® denotes the corresponding cocharacter of G. In the following,
we will also denote by a standard parabolic subgroup of H with a letter with a /, and the
corresponding parabolic subgroup of G' will be denoted by the same letter without ’.

Let f € T([G]), we define

ATf(R)y= > epr > Fp(Hp(yh) = Tp)fp(vh).
P'eF’ ~YEP!(F)\H(F)
By [Zyd19, Theorem 3.9] (see also [LWX25, Theorem 3.2.2]), when T is sufficiently positive,

AT f € S°([H]), moreover, the map f € T([G]) — AT f € S°([H]) is continuous. For such 7,
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we define

PT(f) = [ ATf(h)dh

[H]
More generally, for Q" € F' and f € T(Q(F)\G(A)) (see [BLX24, §4.3] for a definition),
we define ATQ' f by

NSy = D0 R DD R Hp(h) ~ Te) fr(rh).
P'eF’ 'yEP’(F)\Q’(F)
P'cQ’
We can similarly show that AT-@" € S%[H]b,) and the map f € T(Q(F)\G(A)) — AT f
SU([H ] /) is continuous.
There is also a variant of truncation operator for Levi subgroup. Let Q' € F' and f €
T([Mg]) and T € ap, we define

AT f(h) = 3 < > 73 (Hp (vh) = Tpr) fpong (7).
g’eg/ YE(M NP (F))\Mg (F)
/C /

Since (5]@’_1 is bounded on {h € Mg (A) | ?FQ"/(Hp/(h) —T) = 1}. By Lemma 2.3.1, for
[ € S([Mg)), the integral

/ 79 (Hp(h) — Tp) foong (h)
[Meylpan,

is absolutely convergent. As a consequence,
(7.2.1) For f € S([M¢]) we have

/ ATMe f(hydh = > €%, / 7 (Hp: (h) — Tpr) foong (h)dh.
[Mq/] PleF Mgilpram o
P/CQ/
Similarly,
(7.2.2) For f € S([M¢]) we have
/ AT Mo f(hydh = Y €%, / 1 7 (Hpr (h) — Tpr) fronig (h)dh.
[MQ’]l P'eF’ MQ’]P’mMQ,
Pch/

We say that T' € aj, — oo if (T, ) — oo for any a € A{. Therefore, when T' — oo,
7p/(Hp(h) — Tpr) — 0 for any h € H(A). Therefore, by the dominated convergence theorem,
we see that

(7.2.3) For any f € S([G]), we have
lim PT(f) =P(f).

T—o00
Let M be a Levi subgroup of G. We write XX/ for the preimage of XA in X(M). Let

Sa([M]) = Sy (G).
64



Lemma 7.2.1. Let Q' be a proper parabolic subgroup of H. Then for any f € Sa([Mg]), we

have

/ F(h)dh = 0.
(Mgt

Proof. Let x € %%Q, and f € S, ([Mg]), it suffices to show f[MQ/]l f=0.
Assume that Mg = Gy, X --- X Gy, X Spy,., then f[M’Q]l is the product of
e The “twisted diagnal period” on S([Gn, X Gp,])
fre o (g, we'g™ wy)dg,

where wy denotes the longest Weyl element as usual.
e The symplectic period on S([Gay]):

fe f(h)dh.
[Spa,]

Then from Theorem 5.3.2 and the definition of %AA/[Q, it is easy to see that at least one of the

integral above is vanishing.

Combining Lemma 7.2.1 and (7.2.2), we see that
(7.2.4) Let f € SA([M¢]) and T € aj, be sufficiently positive. Then

/[M . ATMar f(h)dh = 0.

Proposition 7.2.2. Let f € Ta([G]), then PT(f) is a constant of T, and this constant is

equal to P*(f) in Theorem 6.1.3.

Proof. For P' € F', let I'’, be the function on aps X aps defined in [Art81, §2]. The function

I'5, is compactly supported in the first variable when the second variable stays in a compact

subset and
Tp/(H — X) Z EQ/TP/ o (H,X).
P'eF’
P/CQ/
From this, for f € T([G]), T,T" € a; sufficiently positive, we can write
AT phy = >0 > Tl (He(6h) — T, Th)AT? f(5h).
Q'EF! 5eQ! (F)\H(F)
Therefore
PTH(f) - =Y / Tl (Hey (h) — Tor, Ty ) AT f(h)dh
qer e
QAH
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It remains to show that for any f € TA([G]) and any Q" # H € F', the integral
/ ATQ f(h)dh
[H]},,

vanishes. As SA([G]) is dense in Ta([G]) and the integral above is continuous in f. Therefore
it suffices to show the vanishing for f € Sa([G]). However, this directly follows from (7.2.1).
The final statement then follows from (7.2.3) O

APPENDIX A. COMPUTATION OF THE FIXED POINT AND THE TANGENT SPACE

In the Appendix, we do an exercise in linear algebra. We show that, under the hypothetical
Langlands correspondence, the fixed points of the L-parameter and the L-function L(7T,X)
coincide with the concrete description in §1.2.3 and §5.5.2. In particular, the analogue of
Theorem 1.2.1 for function field matches with the Conjecture 1.1.1.

A.1. The global Langlands correspondence. We will assume the following properties of
the hypothetical global Langlands correspondence:

(1) There exists a locally compact topological group L, such that there is a bijection of

isomorphism classes:
{n-dim continuous irreducible rep. of Lr} +— {cuspidal automorphic rep. of G,,(A)}.

For a cuspidal automorphic representation m of G, we write ¢, the corresponding
representation Ly — GL,,(C), and called it the L-parameter of .

(2) Let P = MN be a standard parabolic subgroup of G,,. Let 7 be a unitary cus-
pidal automorphic representation of M. By the correspondence above, we have an
L-parameter Lp — M of .

Let II = Indg?&w 7, realized as Eisenstein series on G, (A). Then the L-parameter
of II is given by (or defined to be) Lz — M — GL,(C).

A.2. The fixed points. Let I' be a group. Let n > 0,m > 0 be integers. Assume that

we have a 2n + m-dimensional semisimple complex representation ¢ of I'. T acts on X :=

GL21+4+m(C)/ GL,(C) x GLjy11, (C) via the representation I' — GLay44, (C) composes with the

natural action of GLgy 1. (C) on X. We write Fix(¢) for the set of fixed point of T on X.
Assume that ¢ decomposes as

k
¢ =P i,
i=1

where ¢; is an n;-dimensional irreducible representation of I'. We remark that ¢; and ¢; may

be isomorphic for i # j.
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We may identify X with the set of pairs (V, W) where V, W are subspaces of C*"*t™ with
dimV = n,dimW = n +m and C?*"*™ =V @ W, where the action of GLa,1.,(C) is given
by g (V,W) = (gV,gW). The set Fix(¢) then corresponds to decompose the representation
into a direct sum of an n-dimensional invariant subspace and an n + m-dimensional invariant
subspace.

Considering the following condition:

(A.2.1) For any subset I C {1,2,---,k} such that ) ,_; n; = n, we have ¢; % ¢; for any i € I
and j & I.

If the condition (A.2.1) does not hold. Take a subset I such that }_,.;n; =n and ¢; = ¢,
for some i € I and j ¢ I. Then the subrepresentation ¢;@®¢; has infinitely many decomposition
into irreducible representation. Take any such decomposition ¢; & ¢; = p @ p/, then the pair

Y bs+p > di+p

sel tgl
71 t#j

is a fixed point. Therefore there are infinitely many fixed points.

Conversely, if the condition (A.2.1) holds. Let C*"*™ = V @& W be a decomposition of
[-representation. Then (A.2.1) implies that each isotypic part of ¢ must completely lie inside
V or W. Since isotypic part is canonical, then Fix(¢) is finite. To conclude, we have shown

the following lemma

Lemma A.2.1. The set Fix(¢) is discrete (in the Zariski topology, so equivalent to finite) if
and only if the condition (A.2.1) holds.

From the discussion above, it is easy to see the following

Lemma A.2.2. When Fix(¢) is finite, the set Fix(¢) is in bijection with the set

{]c{1,2,.-- ,k}\Zni—n}

el
Finally, the following lemma describe the representation given by the tangent space of fixed

point.

Lemma A.2.3. When z = (V,W) € Fix(¢). Then the representation of T' at Ty X is isomor-
phicto VVoW oV o WV.

Proof. Tt suffices to show that for z = (V, W) € X, then as a GL(V') x GL(W) representation,
T,X2VVeWaoVeWY =Hom(V,W)® Hom(W,V).

Let C[e] be the ring of dual number. Then 7, X can be identified with the pair of free C[e]-
submodule (V, W) of C[e]***™ such that C[e]*"*" = V&W and V@¢jC = V, We¢ C = W.
Then it is direct to check that all such (V, W) is of the form (V 4+&V +eSV,W +eW +eTW)

for (S,T) € Hom(V, W) x Hom(W, V). This finishes the proof. O
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