ON THE GEOMETRIC SIDE OF THE JACQUET-RALLIS RELATIVE TRACE
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ABSTRACT. We study some aspects of the geometric side of the Jacquet-Rallis relative trace for-
mula. Globally, we compute each geometric term of the Jacquet-Rallis relative trace formula on
the general linear group for regular supported test functions. We prove that it can be described
by the regular orbital integral. Locally, we show that the regular orbital integral can be compared

with the semisimple orbital integral on the unitary group.
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1. INTRODUCTION

The global Gan—Gross—Prasad(GGP) conjecture | | relates the non-vanishing of period
integral on classical groups to the non-vanishing of the central value of certain L-functions. In
[ |, Jacquet and Rallis proposed a relative trace formula(RTF) approach to the GGP conjecture
for the Bessel periods on U(n) x U(n+1). In | |, Zhang solved the smooth transfer conjecture
and proved the global Gan-Gross-Prasad conjecture for U(n) x U(n+1) under some local conditions
as a consequence.

We briefly review the Jacquet-Rallis RTF on the general linear group here. Let E/F be a

quadratic extension of number fields. For k € Z>1, let
G% = ResE/F GkaE .

Let G' = G}, x G}, ;. G’ has two subgroups Hy, Hy, where

h
(1.1) H, = (h, ( 1) )(h S G;L% Hs = GLn,F X GLn+1,F .

Let A = Ap, the adeéle ring of F' and [G'] := G/(F)\G'(A). We write 7 for the quadratic character
on A associated with E/F. By an abuse of notation, we also write n for the character on Ha(A)
defined by

N(h2,ms hont1) = (hon) 0 (hopns1)™
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Let f € S(G'(A)) be a Schwartz function and let K¢(x,y) be its automorphic kernel function:

Y. faThy), (zy) €G] < (G,

YEG/(F)

Consider the distribution
(1.2) 1(f) = /[ [ Kt hanteianaans
Hq

Under some conditions on f, this integral is absolutely convergent and has a geometric and spectral
expansion.

In | |, Zydor defined a regularization of the integral (1.2) for all compactly supported
smooth functions f € C°(G'(A)), hence (1.2) makes sense for such f, and it has geometric
and spectral expansion. The regularization and geometric/spectral expansions were extended by
Beuzart-Plessis, Chaudouard, and Zydor in | ] and | ] for general Schwartz functions,

hence a full coarse Jacquet-Rallis RTF is established. Together with other techniques developed

in [ L.l I, [ 1l I [ ], the endoscopic case of the global GGP conjecture
for U(n) x U(n + 1) was proved in | ]. It was extended to certain Eisenstein series and
higher corank cases by Beuzart-Plessis-Chaudouard | ]. In this article, we will study some

aspects of the geometric side of the Jacquet—Rallis relative trace formula.

1.1. Global Results. Let B = H;\G’/Hs be the GIT quotient and let ¢ : G’ — B be the quotient
map, for any b € B(F'), we write G} for the fiber of b under the quotient map. Then there is a
b-part of the distribution I, denoted by I, which is a regularization of the integral

/ / Z f 1 ’7h2 n(h2)dh1dh2.
Hl] H2

v€G(F

The geometric expansion of I is then the identity

I(f)= Y ().
beB(F)
If b is regular semi-simple, pick any v € G'(F) with image b, the distribution I can be computed

via the orbital integral

_ —1
Ib(f) —/HI(A) /HQ(A)f(hl ’yhg)n(hg)dhldhg.

But for general b € B(F), there is no easy interpretation of I. One of the main goals of this
paper is to compute I,(f), for general b € B(F'), under the assumption that there is a place v of

F such that f = f,f", where f¥ € S(G'(A")), f, € S(G'(F,)) and f, is supported in the regular
subset Gy, (Fy) of G'(F)), where Gi, is the Zariski open subset of G’ consisting of elements whose

stabilizer under the H; x Hy action is trivial.



Let v € Gyeg(F) be a regular element and f € S(G'(A)) (with no support condition), in Subsec-

tion 6.1, we will define a distribution I,(f), which can be written formally as

(13) /H /H B yha)(ha)dhdhs,

note that this integral is not convergent in general, therefore some regularization is needed. Once

the distribution I, is defined, our main theorem can be summarized as follows:

Theorem 1.1 (See Theorem 6.1). If f € S(G'(A)) is of the form f,f", and f, is reqular supported,

then for any b € B(F')
I(f) = > 1 (f)
g

where in the summation, v runs through any representative of Hi(F') x Hao(F') orbits of regular

elements in Gy (F).

In Subsection 2.6, we will describe the regular orbits of G} (F') explicitly. In particular, we will
see that the sum above is a finite sum.

There is a Zariski open subset G/, of G’ such that G, C Gy, (see Subsection 2.4). When f, is
supported in G/, (F,), we will have a better description of I,(f) as follows:

Theorem 1.2 (See Theorem 4.2). If f € S(G'(A)) is of the form f,f, and f, is supported in
G' (F,). Let v € G'_(F), then we have the following assertions:

(1) For s € C with Re(s) sufficiently negative, the integral

/ / f(hT vha)n(he)|det hy|*dhidhy
Hi(A) JHa(A

is absolutely convergent, and has a meromorphic continuation to C which is holomorphic at
0. The value at s =0 coincides with I(f).

(2) For each b € B(F), there is a unique Hi(F') x Hao(F) regular orbit inside G} (F) N G/ (F).
Choose any ~ in this orbit, then

In fact, we will first prove Theorem 1.2 and a Lie algebra version of it in Section 4, and then

deduce Theorem 1.1 from it in Section 6.

1.2. Local Results. Let v € G'(F) be a regular element, our regularization of the integral (1.3)
will make the distribution I,(f) Eulerian. In fact, to define I,(f), we first study a local analogue
of it in Section 5. Let v be a place of F, and let f € S(G'(F,)) (with no support condition), we

will prove the following result in Section 5.

Proposition 1.3. [See Subsection 5.8 and Proposition 5.12] Let v € Gyoo(Fy), then there is a map

S(G'(F,)) — {meromorphic functions on C}, f+— I,(f,s)
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which is a reqularization of the integral

(1.4) / / F(hy ' yhg)|det hi|*n(he)dhidhs.
Hi(Fy) JHa(F)

with the following properties:

(1) 1,(f,s) only depends on the value of f on the orbit of .
(2) For x € Hi(F,) and y € Ha(F,), let f*¥(y) = f(zyy~ ') € S(G/(F,)), then

LY, s) = [deta*n(y) I, s).

(3) Ify € G/(Fy), then the integral (1.4) is absolutely convergent for Re(s) sufficiently negative,
and coincides with I,(f,s) when convergent. In particular, this holds when ~y is regular
semisimple.

(4) There is an abelian L-function L(s) such that Ig(f, s) := I,(f,s)/L(s) is entire for any
f, and when f = 1giy and everything is unramified, I(f,s) = L(s).

When ~ is regular semisimple, the orbital integral I,(f,s) has been studied in depth. One key
step towards the proof of the global GGP conjecture is to show that regular semisimple orbital
integral I,(f,0) can be compared with similarly defined regular semisimple orbital on the unitary
groups.

Let #H, be the isometric classes of n-dimensional non-degenerate E,/F;, Hermitian spaces. For
V € H,, let V' be the n + 1-dimensional Hermitian space V @& E,eq, the Hermitian form on V' is
defined by orthogonal direct sum of V @ hg where ho(eq, eo) = 1. We put GV = U(V) x U(V’) and
HY := U(V) as a diagonal subgroup of GV. Let f¥ € S(GY(F,)) and let v € GY(F,) be a regular
semisimple element, the orbital integral J,(f) is defined by

1,(f) = / f(a ) dedy.
HV(FU)XHV(FU)

Let f € G/(F,) and for each V € H, let fV € S(GY(F,)), there is a notion of matching between
f and fY (See Subsection 7.2), which means f and f" have the “same” regular semisimple orbital
integrals. In Section 7, we will prove a version of “local singular transfer”; which shows that for
f and (fY)yen,, if their regular semisimple orbital integrals match (i.e., they are matching), then
the more singular terms, i.e. the regular orbital integral IE( f,0) and the semisimple orbital integral
of fV also match.

Theorem 1.4. (See Theorem 7.9) Suppose that f and (fV )y ey, match, let vy € G (F,), then we

reg

have

E(,0) =" ey 0dolfY),
(V,0)

where the summation runs through the set {(V,O) | V € H,, O is a semisimple orbit corresponds to v},

and cy,0 are some explicit constants independent of f and fv.
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This result can be regarded as a local analogue of the singular transfer theorem of Chaudouard-—
Zydor in | , Théoreme 1.1.6.1].

1.3. Remarks. In | |, Zhang proposed an RTF approach to the arithmetic Gan—Gross—Prasad
TAGGP) conjecture. In [ |, a p-adic version of the AGGP conjecture is proved. One key
difficulty in [ | is caused by the use of a very specific test function at some split places, and

these functions have regular support but not regular semisimple support, in order to p-adically
interpolate the orbital integral. The result in this article could be applied to loc.cit..

Liu [ ] proposed an RTF to attack the global GGP conjecture for the Fourier-Jacobi period
on unitary groups, and using this RTF, Xue [ | proved the global GGP conjectures for Fourier-
Jacobi period under some local conditions. Some of the local conditions were removed in [ 1,
and a full coarse RTF was established by Boisseau, Xue, and the author | ]. Using the coarse
RTF, the global GGP conjectures for the Fourier-Jacobi period, together with the Eisenstein and
higher corank case, are proved in loc.cit.. We will also consider the Fourier-Jacobi analogue of the
main results in Section 8.

We give an outline of this article. After some preliminaries in Section 2, in Section 3, we extend
the coarse Jacquet-Rallis RTF on the general linear group and its Lie algebra by allowing for a
general character on Hj. In Section 4, we will prove Theorem 1.2. In Section 5, we will define the
local regular orbital integral and study its properties, and in Section 6 we use it to define the global
regular orbital integral and prove Theorem 1.1. In Section 7 we prove the local singular transfer
theorem. In Section 8, we give a Fourier-Jacobi analogue of the results. In the appendix, we extend
the asymptotic of the modified kernel in [ , Theorem 3.3.7.1] to general parabolic subgroups
and its Levi subgroups.

Acknowledgement. The author would like to thank Wei Zhang for the suggestion of this problem
and helpful discussion on many parts of this article, he is also very grateful to Daniel Disegni, Ziqi
Guo, Linli Shi, Yiyang Wang, Hang Xue, Hongfeng Zhang, and Zhiyu Zhang for helpful comments

and discussions.

2. PRELIMINARIES
2.1. General notation.

e We fix an integer n > 0 throughout this article.

e For a matrix A, we write A for the transpose of A.

e Let F' be a number field and let v be place of F', we write F,, for the completion of F' at the
place v. In general, if S is a finite set of places of F, we write Fg := [],cq Fv and A%, for
the restricted product H;gs F,. We also write Fi, : F'®qg R. If E//F is a finite extension,
we put Fs := F ®p Fs.



e Let f and g be positive functions on a set X, we write f < g if there exists C' > 0 such
that f(z) < Cg(z) for all z € X. We write f <, ... ¢, g if the constant C' depends on the
parameters ¢y, , Cp.

e Let r be a real number. We denote by H, (resp. Hs,) the left half plane {z € C | Re(s) <
r} (resp. right half plane {z € C | Re(s) > r}).

e For a vector space V over a field k, we write V* := Homy(V, F') for the dual space of V.
We denote by k™ and k,, the n dimensional column/row vectors respectively.

e Let G be a reductive group over a field k of characteristic 0, and assume that G acts on
a finite type affine k-scheme X. Let X/G be the GIT quotient and let b € (X/G)(k), we
denote the fiber of b under the quotient map X — X /G by X}, which is a closed subscheme
of X.

e Let R be a ring and assume that we have a homomorphism y from R to some abelian group

A. By an abuse of notation, we also denote the homomorphism x o det from GL,(R) to A
by x.

2.2. Algebraic groups. In this subsection, we follow the notations in | | where the reader
can find more details there. Let F' be a number field and let G be an algebraic group over F', we
write goo for the Lie algebra of the Lie group G(F), and let U(gso) be the universal enveloping
algebra of goo. Let [G] := G(F)\G(A) denote the adelic quotient of G. We fix the Tamagawa
measure dg on G(A) as described in | , Section 2.3].

For the remainder of this subsection, we assume that G is connected and reductive. Fix a
maximal split torus Ay of G and a minimal parabolic subgroup Py containing Ag. A parabolic
subgroup P of G is called standard if P O Py, and it is called semi-standard if P D Ag. Let P be a
semi-standard parabolic subgroup of GG, then P has a unique Levi decomposition P = MpNp such
that Mp D A, this is called the standard Levi decomposition. When we say Levi decomposition
of a semi-standard parabolic subgroup, we will always mean the standard Levi decomposition.

Let W be the Weyl group of (G, Ap), that is the quotient by My(F') of the normalizer of Ay in
G(F).

For a semi-standard parabolic subgroup P of G, define
ap = X*(P)®z R, ap:=Homz(X*(P),R).
We endow ap with the Haar measure such that the lattice X*(P) has covolume 1.

Let ag := ap, and ag := a}, . For P C @, there is a natural direct sum decomposition

ap = a B ag, ap = a2 @ aj).

In particular, we will view ap (resp. a}) as a subspace of ag (resp. aj). For P C @), we put

Q . dim ap—dim a,
ef = (—1)amer Q.

If Q = G, we put ag:ap.



Let P} be a semi-standard minimal parabolic subgroup containing P, we denote by AII;(,) the set
of simple roots under the Ay action, relative to Fj, on the Lie algebra of Np. We put A Py = AIG%.
For semi-standard parabolic subgroups P C @, define Ag to be the image of AQé \ A]]zé by the
projection map aj — ap. We also have a set of coroots Ag,v’ the set of weights ﬁg, and the set of
coweights zg,v. Let pp € a} be the half of the sum of the roots of the action of Ap on Np.

For any semi-standard parabolic subgroup P, and for any T" € ag, we define a point Tp € ap,
such that for any w € W such that wPyw~! C P, the point Tp is the projection of w - T on ap
under the projection map ag — ap.

Let Tg be the characteristic function of
{X€ay|{a,X) >0, forall a« € Ag},
and put af := {X € ag | 7'1(5; (X) =1}. We also write ?g for the characteristic function of
{X€ay|(w,X) >0, forall w € ﬁg}
For a semi-standard parabolic subgroup P of G, we put

[G]p = Np(A)Mp(F)\G(A).

We fix a norm || - || on G(A) as in | , Appendix A]. It induces a norm on [G]p by
= inf .
lollps=_ ot ol
There is a notion of weight functions on [G]p as in | , Subsection 2.4.3]. In particular, for

any « € af, there is a weight dp, on [G]p.

We denote by A the neutral component of real points of the maximal split central torus of
Resp/gG. For a semi-standard parabolic subgroup P of G, let AF := Afy; . We also define
AR = AR, = Agg

We fix a maximal compact subgroup K of G(A), which is in good position with Py. Hence we
have the Iwasawa decomposition G(A) = P(A)K for all semi-standard parabolic subgroup P of G.
The map

Hp: P(A) — ap, pr— (x — log|x(9)|)
extends to G(A), by requiring it trivial on K. The map Hp induces an isomorphism A¥ = ap, we
endow A% with the Haar measure such that this isomorphism is measure-preserving. Let G(A)L

denote the preimage of 0 under Hp. G(A)! := G(A)}, is a subgroup of G(A). For general P, the

product in G(A) induces a direct product decomposition (of sets)
G(A) = G(A)h x AP.

The subset G(A)L descends to a subset of [G]p, we denote this by [G]}.
8



Let X(G) be the set of cuspidal datum of G, see | , Section 2.9]. Let P be a semi-standard

parabolic subgroup, we have the following Langlands decomposition of the L? space:

(2.1) L*([Glp) = P Li(Clp).
XEX(G)
Fix a norm || - || on ap. We say T € ag is sufficiently positive, if there exists C' > 0 and € > 0

such that

inf (o, T) > C,e||T|}-
Jnf (a,T) 2 max{C,|T|}

For T € ag and a semi-standard parabolic subgroup P of G, let F¥(-,T) be the function on [G]p
introduced in [ , Subsubsection 2.3.3]. It is a characteristic function of a subset of [G]p, and

this subset is compact modulo center.

2.3. Function spaces. Let F' be a number field and let G be an algebraic group over F. We say
a function f: G(A) — C is smooth, if there exists a compact open subgroup J C G(Ay) such that
f is invariant under the right translation by J, and for all g € G(Ay), the function goo — f(gf9o0)
is smooth on Lie group G(Fs). We say that the function on [G]p is smooth if it pulls back to a
smooth function on G(A).

Let C be a compact subset of G(Af) and let J C G(Ay¢) be a compact subgroup. Let S(G(A),C, J)
be the space of smooth functions f : G(A) — C which are biinvariant by J, supported in the subset
C x G(Fx) and such that

/1

nxy = sup [(R(X)L(Y)f)(g)| < o0
geG(A)

forany N > 1 and X,Y € U(gso). Let S(G(A)) be a union of all S(G(A), C,J), it carries a natural
strict LF topology. In particular, if V' is a vector space over F', we have a space S(V (A)) of Schwartz
function on V(A).

Let G be a reductive group over F', and let P be a semi-standard parabolic subgroup of G. We
denote S°([G]p) by the space of the rapidly decreasing measurable functions on [G]p. In general,
let X C [G]p be a measurable subset, let S°(X) denote the set of measurable functions f on X
such that

N
[flloo,nv == sup ||lz[|p | f(z)]
zeX

is finite for all N. Equipped with the semi-norms || - ||co.v, S°(X) is a Frechét space.
We denote by T°([G]p) the space of complex Radon measure ¢ on [G]p such that there exists

/ 15V ()]
[Glp

Let w be a weight on [G]p, we write S, ([G]p) for the LF space of weighted Schwartz functions

N > 0 making the integral

finite. It carries a natural LF topology.

on [G]p. It consists of smooth functions f on [G]p such that there exists N > 0, such that for all
9



X €U(goo) and r > 0,
1 lloo,x.r v == sup [R(X) f (@) w(z)"||z]|5" < oo
z€[G]p
In particular, if w = || - ||p, Sw([G]p) := S([G]p) is the space of Schwartz functions on [G]p, and
if w=1, Su([G]p) := T([G]p) is the space of functions of uniform moderate growth on [G]p. For
more details on these global function spaces, see | , Section 2.5].

Now let F' be a local field of characteristic 0, and let G be an algebraic group over F', fix a norm
||| on G(F) as in | , Section 18]. We denote by S(G(F')) the space of Schwartz function on F'.
If F' is non-archimedean, S(G(F')) consists of compactly supported and locally constant function,
if F' is archimedean, it consists of smooth functions f on G(F') such that for any X € U(g~) and
N2>0

xwi= sup [ NR(X)f(x)] < .
geG(F)

/]

The space S(G(F')) carries a natural Fréchet topology when F' is archimedean, and we endow

S(G(F)) with the finest locally convex topology if F' is non-Archimedean.

2.4. The symmetric space S and its variants. From now on until the end of Section 2, we fix
a field F of characteristic 0 and let E be a quadratic étale algebra over F'. Let c be the unique
nontrivial evolution of F that fixes F'. For an F algebra R, we will write a — a° for the involution
on R®p F induced by c. For k > 1, write GL,, := GL,, r.

Let S be the algebraic variety over F' such that

S(R) ={z € GL,4+1(R® E) | za° = 1},
where 1 stands for the identity matrix of size (n + 1) x (n + 1).

We regard the group GL,, as a subgroup of GL,; via the embedding g — (g 1). The group

GL,, has a right action on S by

T-g= g_lxg.

There is a GLy,-equivariant isomorphism

v:Resp/p GLyt1,5/GLpy1 =S, gr—— 99~ "¢

where GL,, acts on Resg/p GLy11,5/ GLyy1 by left translation. Let B := S/GL, be the GIT
quotient.

Note that there is a natural identification G'/H; x Hg 11 = Resg/p GLnt1,m / GLj 41 F induced
by the map (gn, gni1) = g;, "gn+1, therefore B can also be identified with the GIT quotient G’ /Hj x

Hs. More concretely, the map

(2‘2) (O G/ — S, (gmgnJrl) — V(g;19n+1)

identifies G’'/Hy x Hy with B.
10



Let o € E* with 0o = 1, and let S? be the Zariski open subset of S consisting of € S such
that the matrix £ — o - 1 is invertible.
We write gl,, .1 := gl,,41 p for the vector space of (n + 1) x (n + 1) matrices with coefficient in

F. The group GL,, has a right action on gl,,; given by
A -g:=g1Ag.

Let B := gl,, 1 / GL;, be the GIT quotient. From | , Lemma 3.1], we see that B is isomorphic
to the affine space A2"t! of dimension 2n + 1.

Fix 7 € E/ such that 7¢ = —, let gl], | be the Zariski open subset of gl,, ;; consists of Y € gl 4
such that the matrix ¥ — 7 -1 is invertible.

The Cayley map
1+ 771y
1-71Y

defines a GLj,-equivariant isomorphism between gl ,; and S?. The open subsets gl ,; and S7 is

(2.3) & gl —S%, Yi— —0o

GL,, invariant and descends to open subsets of B” of B and B? of B respectively, and ¢, induces

an isomorphism BT — B? which we will still denote by ¢, .

A b
T = ,
c d

where A, b, c,d has size n x n,n x 1,1 x n,1 x 1 respectively. We put

Write an element z of S as

Cc

A
(2.4) A*(z) = det(b, Ab, A%, -, A"1p), A~(z)=det| ©

CApfl

Let Sy (resp. S_) be the Zariski open subset of S where A™ (resp. A7) is non vanishing, and
let G/, and G” be the preimage of S; and S_ under the map a (see (2.2)) respectively. Let e, 41
be the column vector (0,---,0,1) of size (n + 1) x 1, we can directly check that

t
€n+1
(2.5) At (z) = (—1)"det(z, zeni1, - ;2 €nt1), A ()= (—1)"det

el am
o A v .
Similarly, for X = J gl with Aegl,,ve F"ueF,,decF, define
u

u
A
§H(X) = det(v, Av, -, A" L), 5 (X)=det |

1h4n—1
11



Let gl,, .1, (resp. gl,, 1 ) be the Zariski open subset of gl,, . ; where T (resp. §~) is non-vanishing.
We have

€hi1
el X
(2.6) ST(X) = (—1)"det(ens1, - X ens1), 0 (X)=(=1)"det | "
e X"
Direct computation shows that for X € gl}, ,{(F'), we have
(2.7) A*(ey(X)) = (—207 1™ 5 det(1 — 77 1Y) "6 (X).
and
_ 1 n(n+1) 1 Cne—
(2.8) A7 (o(X))=(—207"") 2 det(l—7Y) "0 (X).
As a consequence, for any Y € gl (F'), we have
(2.9) AT (¢ (Y)) (resp. A7 (¢, (Y))) #0 <= 6T(Y) (resp. 6~ (Y)) #0

For a vector space V over F', put Ei; :=gl(V) x V x V* it carries a right action by GL(F):

1

(A,’U,'LL) g = (gilAgagi Uuu.Q)'

We write ng = g/[;/n Note that we have a GLy-equivariant isomorphism

v

—~ A
(2.10) al,ys = gl x F, (
u d

) — ((A,v,u),d)

where F' is endowed with the trivial action of GL,. Thus, we can view gl, as a variant of gl,
under the GL,,-action.

Let Ay = E;T;/ GL(V) be the GIT quotient. We put A := Apn, by (2.10), we have an identifica-
tion B2 Ax F. If dimV = d, Ay can be identified with the affine space A2?, where the quotient
map q : af; — Ay is given by

(211) (A, U, ’U) — ((Trace A A)lgigd, (UAiU)OSigd—l) .

We see from this description that when dim V; = dim V5, Ay, and Ay, are canonically identified.
For X = (A,v,u) € g/\[;, we put

6T(X) = det(v, Av, A%v,--- A" 1), §7(X) = det(u,ud, uA? - uA""1).

Note that the definition of 6+ depends on the choice of basis of F™, so there is no canonical
definition of §* on m for a general vector space V. Let /g—[\; 4 (resp. E[\;f) be the Zariski open
subset of a[; where {v, Av,--- , A" '} form a basis of V (vesp. {u,uA,--- ,uA" "1} form a basis
of V*). If V.= F™, this is the open subset of gEl where 1 (resp. ) is non-vanishing.

Under the map (2.10), we have

gl =0l L ¥ F, gl =gl, X F
12



Recall that if we have a reductive group G over F acting on a finite-type F-scheme X, then
x € X(F) is called regular if its stabilizer G, has minimal dimension, and x € X (F') is called
semisimple if its (scheme-theoretic) orbit is Zariski closed. We denote by X,ee (resp. Xis) the
Zariski open subset of X consisting of regular (resp. regular semisimple) elements. In this article,

we are mainly interested in the following four cases of X and G.

X =G/, G = H; x Hy;

X =8, G = GLy;
(2.12)

X:g[n+1, G:GLn,

X =gl G =GL,.

In these cases, a rational point is regular if and only if its stabilizer is trivial, and it is known that
(see e.g. | ) Xis=X1NX_.

For g € GL,, and © € S(F) (resp. Y € gl, (F) or Y € QEE;(F)), note that A*(z - g) =
det g - A*(x) (resp. 65 (Y - g) = detg-dF(Y)). Therefore for X and G in these four cases (2.12),
we have X U X_ C X,¢,. We remark that for n > 2, this inclusion is strict.

2.5. Descent on gl,,. Let 3y := {(\-id,0,0) | A € F} C gly.. Then 3y is the center of gly, under
the GL(V) action (i.e. the set of fixed points). The composition 3y < gl, — A induces a closed
embedding 3y — A. We call the image of this embedding the center of A, an element lying in the
center will be called central.

We now recall the descent construction on gl,,, cf. | , Section 3.2] or | , Section 3.4].

It allows us to approximate any element a € A(F') by regular semisimple elements and central

no

elements in smaller GIT quotients. The construction consists of two steps: first approximate a by
(ag,a®) where ag is regular semisimple and a® is close to being central, and then approximate a°
by central elements (aq,--- ,a;). We now describe them in detail.

Step 1. For any vector space V over F, We have a stratification of Ay as described in | ,
Paragraph 3.1.4]. For an integer r with 1 <7 < dimV, and X = (A,v,u) € QF;(F), let

(2.13) dr(X) = det(uA™"?v) 1< <.

") be the locally closed subscheme of a‘: such that d, # 0 but ds = 0 for s > r. The

Let Ef;
subscheme EE;(T) is GL(V)-invariant and descends to a locally closed subscheme .Ag) of Ay. Note
that Ag}i mV) is the open subset Ay ;s consisting of regular semisimple elements.

Choose an isomorphism ¢ : F™* =2 F" @ F™ " it determines an embedding

(r

l’:g[; Xg[ner)g/Ew

(2.14) A /
(A17917U1)7<A27U27U2)'—><( ! Uu2>,v1,m>

v’ As
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where v’ € F, satisfies

fo<i<r-—1

W Alvy =
1 ifi=r—1.
and v' € F" satisfies
wudiel if0<i<r—1
1 ifi=r—1.

The map (2.14) descends to an isomorphism of varieties
(2.15) vt AV X Apnr =2 ACT)

where A(Z7) = UkZTA(k) is an open subset of A. The isomorphism ¢ is independent of the choice

of 7 and restricts to an isomorphism

(2.16) AGY e Al o p0+9),

(0)

rn—r such that ¢(ao, a®) = a.

In particular, for a € A" (F), there exists unique (ag, a’) € A%’Z x A
Note that ag is regular semisimple in Ap-(F').
Step 2. Fix a € A" (F). As we discussed in Step 1, a can be uniquely written as t(ag, a®). Assume
that a’is represented by (A,v,u) € g[F/xn:(F), then uA‘v = 0 for any i > 0 (see | ,3.1.4.1]). We
therefore see that a° is determined by the characteristic polynomial P of A. Assume P decomposes
in the polynomial ring F[z] as P = P["" - -- P,"* where P; are distinct and irreducible. For 1 <i < k,

put F; = F[z]/P;(z), which is a finite extension of F. Put

k k
(2.17) H; =Resp, pGLy,p,, H'=][H:, bi= Resp, /polp, " =[]
i=1 i=1
Let Apo be the GIT quotient [;0 /HY which can be identified with Hle A; with
A = ReSFi/F(é—[;’;/GLm,Fi)'

Choose an isomorphism ° : @le Resp,, pF" = F"". Then we get the embedding

(2.18) tgo : H® < GLy—yr, (9i) — @y
and
(2.19) byo hNO — glpn—r, (Ai,vi,ui) — (@Ai,@vi,@ui),

where we have used the identification.
Homp, (F}", F;) = Homp(F",F), [+ (v— trp,/pf(v))

The embedding (2.19) induces a natural map Ago — Apn—r and this map is independent of the
choice of i°.
~ / ~
Let h% denote the open subset of h0 consisting of (A4;, u;, v;) such that det Q;(A;) # 0, where Q;

~/
is the characteristic polynomial of A; over F. h? descends to an open subset A’Ho of Ago.
14



We put
Hy=GL,, H=HyxH’ bo=glp, b=DhbyxhO.

The GIT quotient Ap := H/ H can be identified with Apr x Apo. The isomorphisms ¢ and °
determine the maps ¢4 in (2.19) and ¢ in (2.14), and in terms gives a map ¢y : [;(](r) X h~0 — g/\[;
Let H’ = fi)(r) X f;’,. Then E’ is an open subset of H, and descends to an open subset A%, of Ap.
The map ¢y restricts to a map E’ — ;[;, and descends to a map t4 : Ay — A. The map 14 is
independent of the isomorphisms i and i and by | , Appendix B] (see also [ , Subsection
6.4]), the map 4 is étale.

Denote «; be the image of T in F; = F[T|/(F;), and let a; be the image of («; - id,0,0) under

the quotient map a‘z — A;. Let ay = (ap,a1,--- ,ar) € Ag. From the definition, we see that
talag) = a.
By [ , Appendix B] (see also | , Subsection 6.4]), we have a Cartesian diagram

H/XHGLH*)gA[;L

(2.20) l l

[ —
where

e The right vertical map is the quotient map, and the left vertical map is induced by the
quotient map f;’ — Ap, trivial on the second component.

e The bottom horizontal map is ¢4, the top horizontal map sends (X, g) to ¢4(X) - g.

By the vanishing of Galois cohomology, we have
(2.21) (0 x" GL,)(F) = §'(F) x"5) GL, (F).

Hence the map ¢, induces a natural bijection between the H (F')-orbit of ba , and the GL,,(F)-orbit
of gﬁ:w.

We finally remark that the above construction is compatible with base change. More precisely,
if K/F is a field extension (not necessarily algebraic) and for a € Ay (F'), the above procedure
gives H, b and the diagram (2.20). If we regard a as an element of Ay (K) = Ay .k (K), assume
that the above procedure gives Hy, 6;( and the diagram (2.20) over K. Then one check easily that
Hyi = H xp K is the base change of F, and the diagram (2.20) over K is also a base change of
the corresponding diagram over F. We will use this fact for F' is a number field and K = F}, for a

place v of F.

2.6. Classification of regular orbits. In either of the four cases in (2.12), let X/G be the GIT
quotient, and ¢ : X — X/G be the quotient map. For b € X/G(F'), we denote by X, the fiber of
b (see Subsection 2.1). We now use the results in Subsection 2.5 to classify the regular orbits. Let

us first begin with some special regular orbits.
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Lemma 2.1. In either of the four cases in (2.12), for anyb € X/G(F), G(F) acts simply transitively
on Xp(F)N X4 (F) and Xp(F) N X_(F). In other words, there exists a unique orbit OF(b) (resp.
O~ (b)) of G(F) action on Xy(F') such that this orbit is contained in X4 (F) (resp. X_(F)).

Proof. We prove the result for X, and the proof for X_ is then similar.

When X = gl,,, the lemma follows from [ , Proposition 6.3] '. By (2.10), it holds for
X = gl,4;. For X =8, take 0 € E such that Nmg,p(0) = 1 and b € B?(F). By (2.9), as a
set with GL,,(F') action, Sp(F") NS4 (F) is isomorphic to 9l 1) (F)Ngl,q 4 (F), therefore the
lemma holds for X = S. Finally, since G'/H; x Hy 41 is isomorphic as a GLj-variety to S, the
lemma holds for X = G'. O

If b € (X/G)(F) is regular semisimple, then O (b) = O~ (b) = X, (see | ]). We also have
the following result
Lemma 2.2. For X = gl, and G = GL,, and a € A(F) is central, then O (a) and O~ (a) are the
only regular orbits of in g/Em.

Proof. Let a be the image of (A-id,0,0) € gfa(F) If A = 0, then this is proved in | , Lemma
6.1]. For general A, we only need to note that A — (A—\-id, 0, 0) gives a GL,, equivariant bijection

between QT[;’Q and gff;yo. O

If a € A(F) is central, the orbit O (a) and O~ (a) can be described explicitly. If a is the image
of (A-id,0,0) then O"(a) is the orbit of

A1 0 0
0 A 1 0
(2.22) Zy = 0 0 A 01, ,0
0 0 0 A 1
And O~ (a) is the orbit of
A0 0
1A
(2.23) Z = 0 1 ,0,(0,---,0,1)
0 0 -~ 1 A

Now we classify general regular orbits. We first consider the case where X = gA[; and G = GL,,.
Let a € A(F), we use our notation in Subsection 2.5. We have field extensions F;(1 <i < k) of F
and after choosing the isomorphism 4 and i°, we associate a € A(F) with a map ¢, : h— g’g

Let £ denote the set of maps from the set {1,2,--- ,k} to {+,—}. For ¢ € £, denote ¢; := £(7).

n [ , Proposition 6.3] such result is only stated for local field, but the proof works for any field of charac-

teristic 0.
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Proposition 2.3. Pick any Xy € f;om(F). Then a complete set of representative of orbit of

GL,(F) action on gff;ha(F) N gl yog (F) is given by
(2.24) {ty(Xo0, Z5L,--- , Z5k) |e € £},
where £ runs through every element in € and we recall that o is the image of T in F; = F[T]/(F;).
Moreover
(1) For eache € £, the orbit of ty(Xo, Zg},- -+, Z5k ) is independent of Xo and the choice of the

isomorphisms i and i°.
(2) The orbit of uy(Xo, Z2 .-+

a1’

,Z;[k) (resp. wy(Xo, Zg,,- - ,ng)) is Ot (a) (resp. O~ (a)).

Proof. By the diagram (2.20) and the equality (2.21), the map ¢, induces a GLj,(F)-equivariant
bijection

By (F) x5 GLy (F) — gl o(F),
therefore, ¢y induces a bijection between the H(F) orbit on Ba,; (F) and GL,,(F) orbit on gA[;a(F),
and regular orbits corresponds to regular orbit. Since each component a; of ag is either regular
semi-simple (¢ = 0) or central (¢ > 0), Lemma 2.2 implies that the regular orbits in gffla(F) are

given by (2.24). Different choices of i and i® will yield ¢, composed with an GL,,(F) action on ng(F ),

which certainly does not affect the orbit, therefore (1) is proved. Part (2) follows from [ , Proof
of Lemme 3.2.2.2 and Lemme 3.4.1.1]. O
For € € &£, we call a regular orbit in gfi;ya(F) of type ¢, if it is the orbit of vy(Xo, Z5t,- -+, Z5k).

Corollary 2.4. In each of the cases in (2.12), for b € X/G(F), there are finitely many regular
orbits of G(F)-action on Xy(F'). Indeed, the number of orbits is a power of 2.

Proof. The case when X = ng is proved in Proposition 2.3, the other cases are reduced to this case

(see the proof Lemma 2.1). O

3. COARSE RELATIVE TRACE FORMULAE

3.1. Preliminaries. In this section, we denote by E/F a quadratic extension of number fields.
Let ¢ be the non-trivial element in the Galois group Gal(E/F'). For an F-algebra R, ¢ will induce
an involution on R ®r F, we denote this by a +— a°. Let A := Ar and Ag be the ring of adeles of
F and F respectively.

Let £ > 1 be an integer, we write GLj := GLj ¢ for the general linear group of rank k over
F. Let Gj := Resg/p GLp g and let G' := Gj, x G ;. G’ has two subgroups H; and Hy as
n (1.1). We put Hy,, = GL,,, Ha 5,41 = GL;, 41, they are both regarded as subgroups of Hy. For an
element ho € Ha, we write ho, and ho 41 for its corresponding components. Let K; and Ks be
the standard maximal compact subgroup of Hj(A) and Hy(A) respectively.

For k > 1, let By be the upper triangular Borel subgroup of G). We choose By, as our fixed

minimal parabolic subgroup of G}, and we choose B, X Bj41 as our fixed minimal parabolic
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subgroup of G’. We put a := ap,. Let By p := By N GL, be the upper triangular Borel subgroup
of GL,,.

Let k,a,b be integers such that kK > 1 and 0 < a < b <k, let e1,---,e; be the standard basis of
E* and let E** denote the subspace of E¥ generated by eqi1,-- - ,€p.

Let Frs be the set of Rankin-Selberg parabolic subgroup of G’ introduced in | , Subsec-
tion 3.1]. It consists of semi-standard parabolic subgroups of G’ of the form P,, X P, 41, such that
P, is standard and P,+1 NG/, = P,,. When P, is the stabilizer of the flag

(3.1) 0O=VWwWcWwc.---CcV,=E"

with V; = E%%  then there are 2r + 1 possible choices such that P, x P,.1 € Frs. It is either the
stabilizer of the flag

(3.2) 0=VoC - CViCVit1®Eent1 C -+ CV, @ Fepyq = E"H
with 0 < k < r — 1 or the stabilizer of the flag
(3.3) 0=VC--CVp CVi@®Fepy1 C---CV,®Eepp = E"L

with 0 < k <.
In the case when P, stabilizes the flag (3.2), the standard Levi subgroup Mp,
be identified with

41 of Py can

[[ GLE™“+) x GL(E*"+ + Eeyya).

0<i<r—1
iZk

Let Mp,,,(A)" be the subgroup of Mp, ,(A) consisting of elements

[[ GL(E®*+)(A)! x GL(E™“+ + Eeni1)(A)
0<i<r—1
ik
under the above identification. We denote by %+1(A)}13n+1 the product Mp,,,(A)'Np, , (A).
In the case when P, stabilizes the flag (3.3), Mp,, , can be identified with

+1

[ GL(E* ) x GL(Eenyq).

0<i<r

Let Mp,,,(A)" be the subgroup of Mp, ,(A) consisting of elements

[ GL(E™+1)(A)! x GL(Een1)(A)
0<i<r
under the identification above and we also set G, +1(A)}1%+1 =M }%RHN Poyr (A).
For P € Frs, we write Py, := PNH; = P, and Py, = PNHy. Let Frsr be the set of
semi-standard parabolic subgroups of Hy of the form P, x P,y1, such that P, is standard and

P,11NGL, = P,. The map P — P NHy induces a bijection between Frs and Frs r
18



The natural map G, — G/, 11 induces a map a, < a,11. For P € Fgg, it induces an embedding
ap, < ap,,,. Denote
apy, :=ap, Nap,., = APy, Nap.

Gy,
+1
induced by apy, < ap,,; — ap'

The subspace apy, is the Lie algebra of APy, == Ap NAp = A%‘;{l NA¥. Note that we have

n+1

G’ . . .
The natural map ¢ : apy, — a Py is an isomorphism.

+1
the decomposition

MPn+1(A) = M}—l)n+1 (A) X A%C,)H17 ;“L+1(A) = ;“L+1(A)%)n+1 X A%O,Hl
For s € C, define sdet € a}yHl’C by requiring the expression
(sdet, Hp, (a)) = |det a|®

holds for all A%y C G] (A) Define pp, (resp. pp,,,) € apy, be the element pulling back from

pp, € ag:’* (resp. pp,., € aP":II’ ). Let Ppy be the element in a}yy - defined by
Ppy = PPups = PP, + sdet.

G/
We also regard p Pp, s an element of a P"“ c Vvia the isomorphism ¢. Write cp € R for the Jacobian
of «.
Let V be a finite dimensional vector space over R, define V¥ := Homg(V,C). An exponential

polynomial function on V is a function of the form
Z Pe)e, zev,

where \; € V@& and P; are non-zero polynomial functions on V. If A\; are distinct, then P; are
uniquely determined. The term corresponding to A; = 0 is called the pure polynomial term. The
complex numbers A; are called exponents of p.

Let ng/p : A — {£1} be the quadratic character associated to F//F. By an abuse of notation,
we define a character n on Ha(A) by

N(hams han+1) = 15/ (hen) g r(han)".

3.2. Coarse Jacquet-Rallis RTF. For f € S(G'(A)) and P € Fgg, the right translation action
R(f) on L?([G']p) is given by the kernel function

Kipwy)= > [ fa mny)dn,
meMp(F)’ NP(A)
where z,y € [G']p. For x € X(G’), let Kfp,(x,y) be the kernel function of the operator p, o

R(f) on L?([G']p), where p, denotes the projection to x-component in the Langlands spectral
decomposition (2.1). For (hq, he) € [Hl]le X [Hg]pH we put

Ky py(hi,ho) = / f(hytmnhy),
meMP(F mG’ Np(a



where we recall that Gj is the fiber of b (see Subsection 2.1).
For each @ € X(G') UB(F) and T € ag, the modified kernel is defined as

K{ J(h1,ho) = Z €p Z TPpi1 (Hp, 1 (0nh2n) — Tp, ) Ky pe(vhi, 0h2),

PEFRs ’yEPHl (F)\H1(F)
5€ Prag (F)\H> (F)

where (h1, he) € [H;] x [Ha]. More generally, for Q € Frs and e € X(G') UB(F), we put

EE(hiho) = > €3 > P (Hp,,, (0nhon) — Tp,., ) Kf.pe(yh1, ha),
PeFrs  y€Pu (F)\Qu, (I)
5€ ity (F)\Qu, (F)

where (hy, he) € [Hl]QHl X [H2]QH2'

We have the following asymptotic of modified kernel in [ , Theorem 3.3.7.1]: for any
N > 0, there exists a continuous semi-norm || - || on S(G'(A)) such that
(3-4) D KG (b ha) = FO 4t (o, T) K g (B ho)| < e MR iha gy 1£1
XEX(G')

holds for all f € S(G/(A)), (h1,h2) € [H1] X [Ho] and T € a4 sufficiently positive.
In Proposition A.1, we generalize the result to any KJ?;(T, we showed that for every ) € Frg and

N > 0, there exists a continuous semi-norm || - || on S(G'(A)) such that
T n _
(35) Y IKF (i he) = FO+ (hon, To, K rqa(hn, ho)| < e MG fikaligh 111
XEX(G)

holds for f € S(G'(A)), (h1,he) € [Hilgy, ¥ [Hg]]ch2 and T € a,41 sufficiently positive.

We also showed in Proposition A.3 that for any f € S(G'(A)) and N > 0, we have

T _
(3.6) > AKE (h ha) = FO 1 (hon, Tg,. ) K rqe(h1, ho)| < e N”T”thHQH lh2llgy -
bEB(F)

We say that an idele class character & : Ay, — C* is strictly unitary if it is trivial on the subgroup
AZ C A7,. Note that any idele class character can be uniquely written as &-|- |, where § is strictly
unitary and s € C.

The next theorem slightly generalizes the result in [ , Section 3] by allowing a general
character on Hj(A).

Theorem 3.1. Let & be a strictly unitary character of Aj.
(1) For any f € S(G'(A)), s € C and T sufficiently positive, we have

(3.7) 3 /H

/ |KT, (h1, ho)||det hy|**=)dhydhy < oo
XEX(G) [Ha] /[He]

and

(3.8) Z/ / |KF,(ha, ho)||det ha ") dhydhy < 0.
beB(F Ho]
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(2) For e € X(G')UB(F), as a function of T, the integral
11(f,&8) = / K7 o(h1, ho)&(h)|det by [*n(hg)dhidhy
[H1] /[Ho]

is an exponential polynomial. If s & {—1,1}, then the pure polynomial term is a constant,
we denoted it by Io(f,&,s). For a fixred f and &, I4(f,§,s) is meromorphic on C\ {—1,1}.
We write Io(f,€) := Is(f,&,0).
(3) For each x € X(G') and s & {—1,1}, the distribution I,(-,§, s) is continuous and the sum
I(f,6,5) = > L(f&s)
XEX(G)
is absolutely convergent and defines a continuous distribution I(-,&,s) on S(G/'(A)).
(4) For each b € B(F) and s ¢ {—1,1}, the distribution Iy(-,§,s) is continuous on S(G'(A))

and

I(f,6,8)= Y L(f&9).

beB(F)

Where the sum on the right-hand side is absolutely convergent.

The proof is similar to [ , Section 3], for later use, we briefly sketch the proof here.

Proof of Part (1). Since |hy[R°(®) <« ||hl||‘Re N By | , Theorem A.1.1(vi)], for N large enough

/ / NIy || ol 7Y | det By ARy dhe
[H1] J[H2]

is finite and defines continuous semi-norm on S(G’(A)).
By | , (3.2.3.2)] for any f € S(G'(A)) and any (hq, he) € [H;] x [Ha], we have,
e(s —N+|Re
S K pa(ha, ho)l | det bR < [yl B2 nstligr Iall TR
XE€X(G)

Since FSGLn+1(. T) is compactly supported as a function on [GL,], we see that
Jo oy 20 O T g, ) s
Hl] H2] XE%(G’

is finite. Combining with (3.4) ,we see that the integral (3.7) is finite. Using the estimate (3.6),

the finiteness of (3.8) is proved in a similar way. O

G/ G/
For each Q € Frs, let Iy ., be the function on aQ’”r1 X aQZﬁ defined in [ , Section 2]. It
is compactly supported in the first variable when the second variable stays in a compact subset.

By | , Lemme 3.5|, for any @ € Frs, the function

X»—>/n+1 (oq FQ L(H, X)dH, X € ap

is an exponential polynomial function and when s ¢ {—1, 1}, the pure polynomial term is constant.
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Proof of Part(2)-(4). For Q € Frs and (h1, h2) € [Hi]qy, x [H2]gy,, we have the following equality

(hishe) = ) > s Qi1 Onhon) = Th,  To, s = Th,, VKRS (v, ha).
QEFrs ¥€Qu, (F)\H1(F)
0€Qmu, (F)\Ha(F)

We hence see that I7(f,&,s) is equal to

/H /H FQnH (HQn+1(h2 n) =10, TQu — TQnH) K2, (hy, ho)€(hy)|det by |"n(he)dhydhs.
QeFrs Y Hile 2Je

Using Iwasawa decomposition, the summand corresponding to @ is

(=2 Hay, (m1)) (=2 Hay, (Mm2))
/ / / & 'DQHl QH1 mi e pQHQ QH2 m2 F/an+l (HQTL+1 (m27n) — Tégn+1 5 TQ7L+1 - TénJrl)
[MQH MQH ] K1 xKso

KQ7

f.e (’I’)’le‘l, m2k2)§(m1k‘1) \det mia ‘Sn(mzkfg)dmldmgdkldkig.

Define fg € S(Mg(A))) by
fo(m) = elraHalm) / / F (k7 Ymnko )€ (k1 )n (ko) dky dkodn.
K1><K2 NQ

Then one readily check that for all (m1,m2) € [Mg,, ] X [Mq,,], we have

,®

/ / KT (muky, moks )& (k) (ko) dky dky = ele@-HamHama) e 8e d (m, o).
K1 JKo

Let My := MQH1 and My := MQHz‘ We obtain

(3.9)
T (P Hay, (m1))
f(hes)= Z /[M ] /M ]e e F/Q”'H (HQ”+1 (m2n) = Tén+17TQn+1 - Tén+1)
Q 1 2
Mg T .
K 2" (ma,ma)€(ma)|ma|*n(ma)dmydms
- Z CQvas(TQnH _TCIQ +1)/ 6<BQ’577HQRH(mQ’n)JrTé?nH)
QEFrs AZ 1, \IMa]x[M]

KT (1 ) (ma) | (ma)dm .

Using Proposition A.4, the last integral in (3.9) is finite as the same argument of part (1), hence
(2) is proved. Part (3) and (4) then follow from the expression of IZ(f,&,s) in (3.9). O

3.3. Coarse infinitesimal Jacquet-Rallis RTF. There is also a Lie algebra version of the
Jacquet-Rallis relative trace formula formulated by Zydor in [ |. Let P = MN € FrsF ,
we put p (resp. m, n) be the Lie algebra of P,y (vesp. Mp,,,, Np,,,). They are Lie subalgebras
of gl,, 1. For ¢ € S(gl,,,1(A)) and P € Frg, we put a kernel function K, p on [GL,41]p,,, by

(3.10) S / (M+N)-g)dN, g€ [GLuslp,,

Mem(F)
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For a € B(F'), we put

Kopalg)= % / (M+N)-g)dN, g€ [GLuslp,,.
Mem F)mg[n+1 a

For T € ap and a € B(F'), we define a modified kernel by

Z Ep Z ?Pn+1 (HPn+1 (79) - TPn+1)K90,P(’Yg)7 g€ [GLH]
PeFRrs ~YEP,(F)\ GLy (F)

More generally, for ) € Frs,r we put
EXQg)=> "% > FEMNHp,,(v9) — Tr)Kppa(v9). g€ [GLulg,.-
pPeF YEPL (F)\Qn(F)

The following result is a slight generalization of the main theorem in | ]

Theorem 3.2 (Zydor). Let £ be a strictly unitary character of Aj,.

(1) For any ¢ € S(gl,11(A)), s € C and T € agy sufficiently positive, we have

Z / |K g)||det g|°dg < oo.

a€EB(F

(2) For any a € B(F), as a function of T, the integral

I7(f,6,8) = KL (9)€(g)n(g)|det g|*dg

[GL,]

is an exponential polynomial. If s ¢ {—1,1}, then the pure polynomial term is a constant,
denoted by I,(¢,§,s). For a fivzed ¢ and &, I,(p,&,s) is meromorphic on C\ {—1,1}. We
put Ll<907 §) == I<907 §,0).
(3) For each a € B(F') and s ¢ {—1,1} the distribution I,(-,&,s) on S(gl,,1(A)) is continuous
and the sum
I(0,&,8) == > I(p, & 5)
a€B(F)

is absolutely convergent and defines a continuous distribution I(-,&,s) on S(gl,1(A)).

Proof. We proved in Appendix A the asymptotic of the modified kernel in the Lie algebra case.
(See Proposition A.5). Using this, the proof is identical to the proof of Theorem 3.1. O

Remark 3.3. There is also a version of infinitesimal Jacquet-Rallis RTF on gA[:1 Let P=MN €
Frs,F, we let m and n be the intersection of m and n with ng under the identification (2.10). Then
for ¢ € S(gfa(A)), we can define K, p in the same way as (3.10) replacing m,n by m and n. We
then define modified kernels K a ., for any a € A(F') using the same formula; analogs of Theorem 3.2
hold in this setting.

The theorem also directly generalizes to products of g/\[;
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4. GLOBAL THEORY I-THE CASE OF G/, -SUPPORTED TEST FUNCTIONS

In this section, we keep the notations in Section 3.

4.1. Explicit computation of exponents. For P € FRrg or Frs r, we say that P is standard, if
P, 41 is standard, more concretely, if P, stabilizes the flag (3.1), then P, stabilizes the flag (3.2)
with k& = r — 1 or the flag (3.3) with £k = r. We say that P is antistandard, if P,y stabilizes the
flag (3.2) with k = 0 or the flag (3.3) with £ = 0. Let Fjs be the set of standard Rankin-Selberg
parabolic subgroups, and let fﬁs‘st be the set of antistandard Rankin-Selberg parabolic subgroups

Proposition 4.1. Let P € Frs or Frs,r

(1) If P is standard and Re(s) < —1, then for all @w" € ﬁﬁnﬂ, Re(p, ,,@") <0.
(2) If P is antistandard and Re(s) > 1, then for all w" € ﬁ%ﬂﬂ, Re(BP7s,wv> <0.

Proof. By the computation in | , Proof of Lemma 4.2], if P is standard, then for all " €
AIVD .. 1> there exists positive integer ¢ > 0 such that <BP,5’ w') =i(1+s), hence (1) holds. If P is
antistandard, then for all @w" € A}WH, there exists positive integer ¢ > 0 such that <£Ps,wv> =

i(1 — s), hence (2) holds. O

4.2. Geometric distribution for the Jacquet-Rallis RTF. Now we state a theorem that com-

putes the geometric term I, under some assumptions on the support of the test function.

Theorem 4.2. Let f € S(G'(A)). If there exists a place v of F such that f is of the form f,f",
with f, € S(G/(F,)), * € S(G'(A%)) and supp(fu) C Gy (Fy) (resp. GL(F,), then
(1) for s € He_y (resp. s € Hs1), we have
> / / |K ¢~ (h1, ha)||det by |2 dRhydhy < oco.
[H,] J[Ha]

beB(F)

(2) Forbe B(F), and s € He_1 (resp. H1) the integral
(4.1) / Kﬂb(hl,hg)’det h1|s§(h1)n(h2)dh1dh2
[H1] /[Hz]

(which is absolutely convergent by (1)) equals to Iy(f, &, s). In particular, as a function of s,
the integral (4.1) is holomorphic on H<_1 (resp. Hs1) and has a meromorphic continuation
to C, which is holomorphic on C\ {—1,1}, and equals to Iy(f,&) at s = 0.

(3) Pick any v € OT(b) (resp. v € O (b)), then the integral

(4.2) / / F(hy o) |det ha € (ha Y (ha) dha g
Hq HQ(A)

is absolutely convergent on H_1 (resp. Hs1) and equals to Iy(f,&, s).
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Proof of (1). We stick to the case where supp(f,) C G/, (F,), the case supp(f,) C G_(F,) follows
from the same argument. Let P € Frs and P be not standard. Then, for any m € Mp(F') and
n € Np(A), we have

a(mn) = (f Z) € P+1(A)NS(A).

Where the map « is defined in (2.2). Since P is not standard, there is an integer k£ > 0 such that

the last k& coordinates of b are 0. Hence
det(b, Ab,--- , A"b) = 0.

This implies f(h; 'mnhg) = 0. Therefore, for b € B(F) we have

Ky py(hi, he) = / f(hytmnhg) =0
mEMp ﬂG/ NP

Similar to the calculation as we have done in the proof of part (2) of Theorem 3.1, we can write

Kfy(hi,ho) = > ep > TPy (Hp, o (Onhon) — Tp, ) Kf pp(vhi, 0h2)
PeFdly  y€Pu, (F)\H1(F)
5€ Py (F)\Ha(F)

T
Z Z ,Qn+1 (HQn-H (6”h2’”) - Té?nﬂ ’ TQn-H - Té?nH)Kgb (7h17 6h2)‘

QETFEL v€Qu, (F)\H1(F)
8€Qmu, (F)\H2(F)

Pick T" € a,41 such that T —T" € a:H, so for all Q € Fgs, the values of

Qn+1 ( TQn+1 TC/Qn+1 )

are 0 or 1. Then we have

/ / > ]behl,hg)HdethllR”dhlth
[H;] J[Ha]

2] bEB(F

S Z / I_‘/an+1 <HQ7’L+1 <h27n) - Té)n+1 ? TQ”I+1 - Té)n+1) X
Qery, ’ Milon, ¥ [M2loy,

S IR (ko) | [det b RO dhydhy
bEB(F)

By the Iwasawa decomposition, and the fact that for a € A,

Kl (a2, ay) = ePratel) KTT (2, ),
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the the summand corresponds to () in the above expression equals to

<_20QH 7HQH (m1)) <_2pQH 7HQH (m2)) ( / / )
e 1 1 e 2 2 r Hg, . (m2y) — T To,., — T,
/[\Ml] /MQ] /[’(1 XKQ Q"+1 Q +1 n Qn+1 Q —+1 Qn+1

Z [K G (maky, maky)| | |det ma R dmy dmadk dks
beB(F

- / / €QPQ,Re(s) (TQn+1 - Té)nﬂ)€<BQ’S’_HQ"+1(m2’")+T‘I’9n+1>ei<2pQHl Hay, (m1))
K1xKa JAZ g \([M1]x[Ms])

e~ Bromy Hon, () 1N QT (1 ky moks)| | [det m [RO) dmy dmadky dks.
beB(F)
Note that the natural map [M;] x [My]! — AZ 1, \([Mi1] x [M2]) is a bijection and is measure-

preserving up to a constant Cg, hence the expression above can be written as

T —(2poe. H
CQCQPQ,Re(s) (/Iin_‘_1 - Té)n+1)e(EQ’Re(s) Qn+1> / / e ( pQHl QH, (m1))
Kix Ko My ><[]\42]]1

(4.3)
> IKET (maky maks)| | [det my RO dmy dmydky dks.
bEB(F)

By (3.6), for (my,mso) € [M1] x [Ms]* and (k1,k2) € K1 x Ko, we have

> KT (maky, maks) — FO - (mon, Tg, ) Kpqp(miky, maks)| < eI my || 3N Ima 37
beB(F)
Using the same argument of the proof of Theorem 3.1 (1), we see that the integral in (4.3) is finite.

To conclude, the expression

(4.4) / ]/ Z ‘be h17h2)”deth1‘Rcsdh1dh2
[Hy H

[H] beB(F)

is bounded by a constant multiple of

Z pQ(TQn+1 - Té)n+1)a
QEFRS

which is of the form
5 aaPa(Tclan T
QEFRS
with ag € C, Py is a polynomial on a,;.
When T is sufficiently positive, T, ., is of the form

10, = Z T vw’
wVEAV

where each Tv is a sufficiently positive real number. Therefore, by Proposition 4.1, the expres-

sion (4.4) is bounded as T varies (and is sufficiently positive).
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By (3.6), this implies

/ / FGni (hQ,mT) Z |Kf7b(h1,h2)| dhidho
[H1] J[Ho]

beB(F)
is bounded as T varies. As T — oo (i.e. (a,T) — oo for any o € Ag), FSn+1(-, T) — 1. Thus part

(1) follows from the dominated convergence theorem. O

Proof of (2). Let f € S(G'(A)) and let T' € a,,41 be sufficiently positive. For N > 0 large enough,
by applying (3.6) to @ = G’, we have

[ Bt o TRl ) = Iy ) det € s (o) < e 171,
Hi Ho
When T' — oo, the integral
/[ 1 ]FGMl(h?,n,T)Kf,b(hla ha)| det b1 |*€(h1)n(hz)dhidhs
H, Ho

has a limit
/ Kﬁb(hl,hg)’det hl‘sﬁ(hl)n(fm)dhldhg.
(Hi] J[Ho]

Similar to the computation in part (1) of the proof, the integral
/ K}jb(hl,hgﬂdet h1|sf(h1)7](h2)dh1dh2
Hl] Ho

is of the form

T
L(f,68)+ > Po(T)e'es™
QAGEFS,
where Pg is polynomial, hence as T' — oo, it has the limit [;(f,{,s). Combining these, (2) is

proved. ]
Proof of (3). Since supp(f,) C G/ (Fy), by the definition of Ky4(hy,hs) and Lemma 2.1, we see
that

Kyp(hi, ho) = Z F(07 1 752).

(51,52)€H1(F)><H2(F)

Therefore, the absolute convergence follows from (1), and the remaining part follows from (2). O
The integral (4.2) is Eulerian, we will then study the local version of it in the next section.

4.3. An infinitesimal variant. The results in Theorem 4.2 have their infinitesimal analogues.

Theorem 4.3. Let g = gpi1 or g/\[/ Let ¢ € S(g(A)). If there exists a place v of F' such that ¢ is
of the form @y, with ¢, € S(a(Fy)), f* € S(g(A")) and supp(py) C g4(Fy) (resp. g-(Fy)), then
(1) for s € He_q (resp. s € H=1), we have

Z / g)||det g|fe®) < 0.

a€B(F)
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(2) Fora € (g/GLy,)(F), and s € H<_1 (resp. Hs1) the integral
(1.5 [ Keat@lictgielomio)ig

equals to 1,(p,&,s). In particular, as a function of s, the integral (4.1) is holomorphic
on He_1 (resp. H=1) and has a meromorphic continuation to C which is holomorphic on
C\{—-1,1}, and equals to I,(p,&) at s = 0.

(3) Pick any v € Ot (a) (resp. v € O~ (a)), then the integral

(4.6) / (7 - 9)ldet g*€(g)n(g)dg
GLn(A)

is absolutely convergent on H_1 (resp. H=1) and equals to (4.5).

Proof. The proof is identical to the proof of Theorem 4.2, where we use the asymptotic properties

in Proposition A.5 instead. 0

5. LocAL THEORY I: NORMALIZED ORBITAL INTEGRAL

Throughout this section, we let F be a local field of characteristic zero. Let v € Gjeq(F),
f € S(G'(F)) and £ : F* — C* be a unitary character. We will define a meromorphic function
I,(f,&,s) in this section and study its properties in Subsection 5.3. The function I,(f,&,s) is a

regularization of the following integral
/ ST A h2)E ) [ (o) by s,
Hy (F)xHa(F)

This integral is divergent in general for any s € C, so how to regularize it will be the main part of
this section. We will first study the infinitesimal version Ix (¢, &, s) in Subsection 5.1 and 5.2, and

the group version in Subsection 5.3.

5.0.1. Notations and Measures. We fix some notation and Haar measures throughout this section
as follows: we fix an additive character ¢ of F. If F'/F is a finite extension, we always choose
Y =)o Trp /F as a fixed additive character on F ’. We endow F’ with the self-dual Haar measure
with respect to 1)’

We fix the Haar measure on GL,,(F') defined by the differential form (r(1)-- - (p(n)(det g;;) ™" A
dg;;. Let K denote the standard maximal compact subgroup of GL,,(F'). If F' is non-Archimedean,
then K = GL,(Op) and vol(K) = vol(Op)"™.

We also denote by A, (resp. N,) the diagonal subgroup (resp. upper triangular unipotent
subgroup) of GL,,, and we endow A,,(F) (resp. N,,(F')) with the Haar measure defined by differential
form (p(1)" [[da;/a; (vesp. [[dz;;). If F' is non-Archimedean, one has vol(A,(OF)) = vol(Op)"

n(n—1)
(resp. vol(N,(Op)) = vol(Op) 2 ' ). Iwasawa decomposition yields the integration formula

. dg=C k)dadndk
(5.1) /GLH(F) f(g)dg /ATL(F)/H(F)/KJ”(W )dadndk,
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1
n(n+1) *
vol(Op)™ 2

Write B,, for the upper triangular Borel subgroup, and let dp, be the modulus character on
By, (F), for a = diag(ay,--- ,a,) € A(F), we have 6, (a) = |a1|" - - - |an|' ™
Let (-,-) be the GL,,(F)-invariant bilinear pairing on ng(F) defined by

where C' € R+ is a constant. When F' is non-Archimedean, then C' =

(52) <(X1, U1, ul), (XQ, V2, UQ)> = TI‘ELCG(XlXQ) + uU1v2 + ug1.

For ¢ € S(gA[; (F)), we define its Fourier transform by

Fov) = [ pou(xyax
ol (F)

We then endow g’El(F ) with the self-dual measure, one check directly that this measure coincides
with the product of measure on F™* x F" x F™ when we use standard coordinates on gﬁ;(F)

Let n,, and b,, be the Lie algebra of N,, and B, respectively, and let n/, be the space of matrices
(ai;) such that a;; = 0 unless j —i > 2. We define

n, = {(A4,v,u) GgA[; |Aen,,ve F" L u=0}, n = {(4,v,u) Eg/\[; |Aen, ve F" 2 u =0},

n

where F"~1 (resp. F™2) stands for the subspace of F™ with the last (resp. last two) coordinate
0.

We write by, = {(4,v,u) € ng | A € by, u = 0}. All the vector spaces nn,bn,ﬁﬁ,@,g has
a natural basis and can be identified with F™ for some m > 0. We then transport the product
measure on F to the Haar measure on these vector spaces via this identification.

Recall the regular element Z," defined in (2.22). By | , Lemma 6.8] (also see [ ,
Lemma 5.7.4]), the map

(5.3) No(F) — Zf 40, n—s Z} -n
is a bijection and is measure-preserving. By | , (5,7,8)], we have the integration formula
1
(5.4) /~ FY)Y = - / /N F(Zs +Y) - h)avdh.
ol (F) Cn SN (F)\ GLa (F) Jon (F)

where f € S(gl, (F)) and
Cn=Cr(1) - Cr(n).

5.1. Orbital integrals on the Lie algebra: central and regular semisimple elements.
Recall that we have a GIT quotient A := gfla / GL,, and the corresponding quotient map g : g/\[; — A.
Let a € A(F) be a central element, by Lemma 2.2, in the fiber gfgv
orbits O"(a) and O~ (a).

We define the L-factors associated to the orbits O (a) and O~ (a) to be

n.a Of a, there are two regular

n

Li(s,&) =[] L(=is—i+1,(&-n)7"), Lg(s,&) =[] Llis—i+1,(¢ ).
=1 =1
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For a regular element X in gfi,/%a (F). We put

Li(s,&) if X € O (a),
L;(s,&) if X €O (a).

LX(37£> =

Let x : F* — C* be a character. We say that ¢ € S(QT,L(F)) is x-unstable, if for all regular

semisimple element X € g/E;L(F ), we have
/ P(X - g)x(g)dg = 0.
GLn (F)

We call a continuous functional (i.e. a distribution) I : S(gl, (F)) — C is y-stable, if for any
Xx-unstable function ¢ € S(g/EL(F)), we have I(p) = 0.

For ¢ € GL,(F) and ¢ € S(gA[;(F)), we let R(g)p denote the right translation given by
R(9)p(X) = ¢(X - g). Note that if I is a y-stable distribution, then for any ¢ € S(gA[,;(F))
and g € GL,,(F'), we have

I(R(9)¢) = x"(9)I(p).

Proposition 5.1. Let a € A(F) be a central element and X € gﬂl:m(F) be a regular element. Let
pE S(g’EL(F)) and s € C. Consider the integral

L«%asw:[¥(mwuvmawmmMam%g

Then we have the following statements:

(1) If X € O*(a) (resp. X € O™ (a)), Ix(p,&,s) is absolutely convergent on H__,, 1 (resp.
H>1_%) and has meromorphic continuation to C, with poles contained in the poles of
LX(Suf)'

(2) For s € C which is not a pole of Lx(s,&), the resulting linear map

S(gh,(F)) — C, ¢+ Ix(p,£, ).

18 continuous.
(3) As a function of s

I )
IE((%E,S) = m

is entire for any ¢ € S(g’EL(F)), and we can choose ¢ such that it equals to 1.
(4) If F is non-Archimedean with ring of integer O, suppose that ¢ = 15[(0), & and n are
unramified, vol(Op) =1, X € g/EL,i((’)), then

IX(307 875) = LX(SaE)

(5) For any s which is not a pole of Lx(s,§), the distribution Ix(-,&,s) satisfies the following
two properties:
o Ix(,&,8) is a &n|-|°-stable distribution.

o Ix(-,&, ) is supported on the closure of GL,,(F)-orbit of X.
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Proof. We prove the case where X € O*(a), and the case X € O (a) follows from the same
argument. Assume a is the image of (A -id,0,0) € g/[n?f)

We first prove this proposition when X = Z;\r. We denote x = £ - . By Iwasawa decomposi-
tion (5.1) and the fact that the map (5.3) is measure preserving, the integral defining Ix(p,&, s)

can be written as

n/ '

where C' is the constant appearing in (5.1). Let f, be the Schwartz function on F" defined by

folor oo =C [ [ o (@G o) + V) - K) (kAN

where
A I 0
A X9
Xa(x1, - ) = 0 0 A -+ 01,1 01,0
0 0 0 A Tn,

Then the integral (5.5) reduces to

1
/ fo <a27... 7 On > lag - - - ay||det al®da.
An(F) ai anfl an

Let b; = ajt1/a; for 1 <i <n—1 and b, = 1/a,, the integral above equals to

n

(5.6) / Fo(br,ba -+ o) T ox(bs) = bl =~ dby - - - dby,.
(F>x)n i=1

Note that ¢ € S(gfj\[;(F)) — f, € S(F™) is continuous, part (1)—(3) also follows from Tate thesis.
For part (4), we compute directly that fo = 1on, by the unramified computation in Tate’s thesis,
IZ;\F(<)07 S, g) = LZ;\F(Sa g)

We finally show part (5). The support of Ix(+,&, s) lies in the closure of orbit of X follows from
the definition, to show stability, following the calculation in | , Subsection 5.7], Let Z; be
the element in (2.23). Consider the following iterated integral

(67 It = / /~ o(ZF - go((Zy X))AX | x(g)|det g|*dg.
Np(F)\ GLy (F) nn (F)

Using Iwasawa decomposition, the above integral is equal to

al An—1
/ fo(xi,- -+ zp)t <(12$1 4+ 4 Z Tp_1 + anmn> lay - - - an]5+1x(a)dxda.
An(F) JF™ n
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Let b; = a;/a;41 for 1 <i <mn—1 and b, = ay,, this can be written as

(b1, 165" x (b)) dby - - - dby,.
!

We thus see that the integral defining I3(p,&,s) is convergent when Re(s) > —1 and by the

functional equation for local Tate’s zeta integral, we have

L(0.&,5) = 7 (5)I 5+ (9,6, 9),

where
n

v (s) = [[r(=is —i+ 1, (&-m) 7).

=1
In other words, when Re(s) > —1, the meromorphic continuation of Ix(p,&,s) is given explicitly

by
(5.8) Iy (p,€ ) =78 ()7 T (., 9),

Denote w, ¢ be the function on QIE;L(F) defined by

Put o(X) = 9(X + (1,0,0)).
Direct computation shows that for Y € b,,(F'), we have

we ((Zg +Y) - g) = x(g)|det g°we s(Zy).

By Fourier inversion, we can write

L(#,€,) =/ . Foa((Zy +Y) - g)x(g)|det g|°dYdyg.
Nn(F)\GLn(F) bn(F)
By (5.4), we then see that
609 = (2 [ P 0
gly

By | , Corollary 3.1.8.2], if ¢ is &n|-|*-unstable, then so is Fy. (Indeed, in loc.cit only proves

the case when ¢ is trivial and s = 0, but the same proof works in general). Therefore

I(p,&,5) = Gwe ((Zg /A " /GL For(X - g)x(g)|det g[°w ((X)dgdX = 0.

Together with (5.8), we see that the distribution Ix(-,&,s) is £n|-|*-stable. This finishes the proof
when X = Z;f.
Now let X € O (a) be a general element, then it can be written of the form Zy - g in (2.22). By

a change of variable, we see that when convergent, we have

(5.9) Iy+(,€:8) = E(g)n(g)ldet g - Ix (. €, ).
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Part (1),(2), and (5) of the proposition directly follows from this. In the Tate integral (5.6), for any
a € F we can choose f, such that the integral gives |a|® - L Z;L(S), therefore part (3) holds. Part (4)

follows from the fact that if X € g,EH(O) then g € GL,(OF) (see | , Proposition 6.3]). O

According (5.8) in the proof above, for Re(s) > —1, we have the following expression
(5.10) I3 (0269 = g2 O [ Foa(g (00X
By the same computation, if we denote wgfs the function on QIEL(F ) defined by
wi (X) = €71 (X))n(a+ (X)) |67 (X)| 7.
Then for Re(s) < 1, we then have
(5.11) Iy (6.6,5) = Gt (25 g ()7 /ng , Foret (xax.

where
ve (s) = [[vlis —i+1, (& n)', ).
i=1

Now we switch to the case when a € A(F) is a regular semisimple element. In this case, the
fiber QIEW(F) forms a single GL,,(F') orbit, any element in this orbit is regular. For X € gfi;ya(F),

we put
LX(87 é) =L

The following proposition is analogous to (and easier than) Proposition 5.1

Proposition 5.2. Let a € A(F) be a regular semisimple element and X € gﬁ;’a(F). Let ¢ €
S(éi;(F)) Consider the integral

Ix(p.6,5) i= /G oy P et et gy

Then we have the following statements:

(1) The integral Ix(p,&,s) is absolutely convergent for any s € C and defines an entire function
on C.
(2) For any s € C, the resulting map

s continuous.
(3) As a function of s

I
Le(p,€,s) == 2()(:0(555)

is entire for any ¢ € S(Q/J\[;L(F)),and we can choose @ such that it equals to 1.
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(4) If F is non-archimedean with ring of integer O, suppose that ¢ = 1&(0), X € gfi;yrs(O), 13

and n are unramified and vol(Op) = 1, then

IX(@7 875) = Lx(S,f).

(5) For any s € C, the distribution Ix(-,&,s) satisfies the following two properties:
o Ix(-,&,8) is a &nl-|*-stable distribution.
o Ix(-,&, ) is supported on the orbit of X.

Proof. Since X is regular semisimple, its orbit is closed, and as a function of g, g — ¢s(X - g)
is then compactly supported. The integral defining Ix (s, &, s) is therefore absolutely convergent
and entire for s € C. This proves (1) and (2), for (3), the orbit of X is a closed subset in the
non-archimedean case and a closed Nash submanifold in the archimedean case. Take a Schwartz

function ¢’ on the orbit of X such that
[ P geomo)iderslidg = 1.
GLn (F)

we can then extend ¢’ to a Schwartz function ¢ on g’EL(F ). (For Archimedean case, see [ ],
Theorem 4.6.1). The function ¢ satisfies the requirement of (3).

For part (4), We show that ¢(X - ¢g) = 1 if and only if g € GL,(OF). In fact, X = (4,v,u) €
£7rs(0) implies that v, Av, - - , A" v is a O-basis of O", and u, uA, - - - ,uA" ! is a O-basis of O,,.
Therefore, if X - g € gl,,(O), then g~'(v, Av,--- , A" ) € gl,(O), hence g~ € gl,(O), similarly
(u,ud, - ,uA" g € gl,(0) implies g € gl,(O), hence g € GL,(O). Therefore, the integral
I (p,s,€) is just the volume of GL,(OF), which is 1. Finally, since a is regular semisimple, part

(5) is trivial in this case. O

5.2. Orbital Integral on the Lie algebra: general element. Let a € A(F) be a general
element, we use the notation in descent construction in Subsection 2.5. From the element a, we
have an associated embedding ¢y : E’ — g?[;, where the induced map ¢4 : A}y — A sending ag to
a and each component a;(0 < i < k) of ay is either regular semisimple (for ¢ = 0) or central (for
i>0).

By Lemma 2.2, there are 2¥ regular orbits for the action of H(F) on HaH(F). Let & be the set of
functions from {1,--- ,k} to {4, —}. For each ¢ € &, there is a regular orbit O%(a) in b,,, defined
by

O%(ar) = ho gy (F) x J] 0%(an),

1<k<i

For each 1 <17 < k, we put

§i=&oNmp p, 7 =nNrepE)/r="1°Nmg/ p,
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both are unitary characters of F*. By an abuse of notation, we also use £ and 1 to denote a
character on H(F') defined by

k
&(h) = [ &(dethi), n(h) =] mi(dethy).
=0 ]
We then define
LhEs) = L(=is—i+1,(&-m)™), Lo s)=]]LGs—i+1,(& m)).
j=1 j=1

For € € £, we define an L-factor by
k

(5.12) L, (&) =[] L&i(s,9).

1=1

Let X € b, (F) be a regular element, suppose that X € O¢(az), we then put

(513) LX(Srg) - LZH(Svf)y

By Proposition 5.1 and Proposition 5.2, for each 0 < i < k and any s € C which is not a pole of

L; . (s,€), there exists a continuous linear map
S:i(F)) — €, pr— Ix (. 5).

- ——k - -
Identifying S(h(F')) with @),_,S(h;(F)), for any regular element X € b, (F) and s € C which is
not a pole of Lx(s,§), we define the distribution Ix (-, &, s) as the tensor product of those Ix,(,&, s).

If ¢ is factorizable in the sense that

where ¢; € S(h;(F)), then we have

k
IX((Pa fa 3) = H IXi ((pivéh 5)'
1=0

Combining Proposition 5.1 and 5.2, we have following result

Corollary 5.3. Let ag € Ag(F) as above and let ¢ € S(h(F)), and X be a regular element in
HCLH(F). We then have the following assertions

(1) As a function of s, Ix(p,&,s) is meromorphic on C, and the pole is contained in the pole

Of LX(87 5)
(2) For s € C which is not a pole of Lx(s,§), the resulting linear map

S(H(F)) E— C? pr— IX<907§7 3)'

15 continuous.
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(3) As a function of s
Ix(p,€,5)
(€, 8) 1= 202
is entire for any ¢ € S(ng(F)), and we can choose ¢ such that it equals to 1.
(4) If F is non-archimedean with ring of integer O, suppose that ¢ = 15(0), & and n are
unramified, each F; is unramified over F', vol(Op) =1 and X € hos(O) x l‘)N€((9), then

IX(QO’ 875) = LX(S’f)'

(5) For any s which is not a pole of Lx(s,&), the distribution Ix(-,&,s) satisfies the following
two properties:
o Ix(+,&,s) is a &n|-|°-stable distribution.
o Ix(-,&, ) is supported on the closure of the GLy,(F') orbit of X.

The notion of stable distribution on E(F) is defined in the same way as in the beginning of
Subsection 5.1.

Now let X € gﬁ;La(F ) be a regular element. Assume that X is of type ¢ (see Proposition 2.3),
thus there exists Xy € O%(ay) and g € GL,,(F) such that ¢y(Xy) = X - g, we set

(5.14) Lx(s,€) := Lx,(s,€).

For any s € C which is not a pole of Lx(x,§), we will now construct a map

the construction will consist of several steps.
First of all, since 14 : A — A is étale and sends ag to a, we can choose an open neighbourhood

wpg of ag in A% (F) and an open neighbourhood w of a in A(F’) such that

e If F is archimedean, both w and wy are semi-algebraic | , Proposition 8.1.2].
e 4 induces a bijection wy — w, which is an isomorphism of Nash manifolds if F is

archimedean, and isomorphism of analytic manifolds if F' is non-archimedean,

Let Q := ¢~ '(w) and Qp := q5;' (wy). Then the top horizontal map in diagram (2.20) induces an

isomorphism
(5.15) Qp xHE) QL (F) — Q, (Y,g) — 15(Y) - g

of Nash manifolds when F' is archimedean and analytic manifolds if F’ is non-archimedean.
Given ¢ € §(2). Let ¢’ € S(Qy x GL,(F')) such that for any (Y, g) € Qn x GL,(F) we have

(5.16) P9 = | L A0 gan

The existence of ¢ follows from the fact that Qp x GL,(F) — Qg x7F) GL,(F) = Q is a

submersion. For any s € C, we put

(5.17) ons(Y) = /G ) ¢'(Y,9)€(g)n(g)|det g|*dg,
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then ¢ s € S(Qp) for any s € C and the map C — S(Qg), s — ¢, is holomorphic.

Lemma 5.4. For s € C, we can regard ¢p s as a Schwartz function on H(F), if s is not a pole of
Lx(s,§), then the complex number

Ix, (pHs) &, 8)
is independent of the choice of ¢’ defining ¢ s.

Proof. Let ¢" be another Schwartz function on S(Qp x GLy,(F)) such that for any (Y, g) € S(Qm %
GL,(F), the equation

(YY) g) = /H " O"(Y - h,h"Lg)dh.

holds. We put
Yis(Y) = / 05 (Y, 9)€(g)n(g)|det g|*dg.

GLn(F)
Switching the order of integral shows that the function ¢p s — s is £n|-|*-unstable. By Corol-
lary 5.3 (5), IXH((PH757§73> :IXH(wH757§73>- O
Recall that there is a unique g € GLy,(F) such that X = 4(Xg) - g. For p € S(2), we define
(5.18) Ix(p. & 5) = E(9) " n(g)ldet g~ I, (01,5, €, 9)-

By Lemma 5.4, Ix(¢,&,s) is a well-defined meromorphic function on C.

Lemma 5.5. For ¢ € §(2), the meromorphic function Ix(p,§,s) only depends on the value of ¢
on the orbit of X (i.e. it is supported on the closure of the orbit of X ).

Proof. We are reduced to show that if ¢ is zero on the orbit of X, then Ix(¢,§,s) = 0. For this
¢, we can pick the ¢’ € S(Qg x GL,,(F)) such that ¢’ vanishes on Qg x {orbit of X}. Then ¢p s

vanishes on orbit of X, the result hence follows from 5.3 (5). O

Remark 5.6. As we mentioned in Subsection 2.5, the map ¢, depends on the choices of the
isomorphisms i and i°, but we can check directly that the definition of Ix(y,¢&,s) is independent
of the choice of these isomorphisms, since different i and i differ by conjugation by an element in
GL,(F).

Now we finally give the definition of Ix(p,¢&,s).

Definition 5.7. Pick u € C®°(w) with u(a) = 1. Let ¢ € S(gl, (F)), and let s € C which is not a
pole of Lx(s,§) we define

Ix(¢,&,8) == Ix(p- (ucq),&,s),
where the right hand side is defined as (5.18).

By Lemma 5.5, the definition of Ix(p,&,s) is independent of choice of u. We now study the

properties of Ix(p,&,s)
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Proposition 5.8. We have the following assertions
(1) For ¢ € S(ng(F)), as a function of s, Ix(p,&,s) is meromorphic on C, and its pole is
contained in the pole of Lx(s,&).
(2) For s € C which is not a pole of Lx(s,&), the resulting linear map

S(gh,(F)) — C, ¢+ Ix(p,£, ).

15 continuous.

(3) As a function of s
Ix(p,&:5)
Lx(s,€)
is entire for any ¢ € S(gN[n(F))
(4) If F is non-archimedean with ring of integer O, F; are unramified over F, £ and n are
unramified and X € gfi;i(O) and ag € Ay (0), vol(Op) = vol(OF,) = 1, X can be written
of the form vy(Xp) - g, with Xg € hors(O) x h*(O) and g € GL,(O), then

IX(lg’[;(@)as»g) = LX(57£)'

(5) For any s which is not a pole of Lx(s,§), the distribution Ix(-,s,&) satisfies the following
two properties:
o Ix(-,&,s) is a &n|-|*-stable distribution.
o Ix(-,&,s) is supported on the closure of GL,(F') orbit of X.

Proof. Without loss of generality, we can assume ¢4(Xpg) = X (otherwise, we can choose a dif-
ferent 4 and i), part (1) and (2) then follows from Corollary 5.3 (1), (2) and the fact that map
S(ng(F)) — S(H(F)), ¢ — ¢vH,s - For part (3), note that for a fixed s = sg, the analytic property
of Ix(p,&,s)/Lx(s,§) only depends on ¢y 4, therefore (3) follows from Corollary 5.3 (3). Under
the assumption of (4), by | , Lemme 3.4.5.1], for all Y € h(F) and g € G(F), we have

Loy w(Y)-9) = /H - L)Y - h)- Lo, (o) (R g)dh.

Therefore, if we choose any u € C2°(w) with u(a) =1 and let ¢ = 1 (uogq). Then ¢ : (Y,g) —
16(0)(Y)u(q(q, (Y)1lar,(0)(g) satisfies the equation (5.16). Then

ors(Y) = /G ) 150y (Vuley (Y)1gL,0)(9)x(9)191°dg = 150y (Y )ulq(es(Y)))-

By Lemma 5.5 and our assumptions, IX(lng(O), €,s)=1Ix(p, & s) = Ix, (o, & s) = IXH(lg(O),ﬁ, s).
Therefore (4) follows from Corollary 5.3 part (4). For (5), to show Ix(-,&,s) is a £n|-|*-stable dis-
tribution, let ¢ € S(QTn(F)) be a £n|-|*-unstable function, replacing ¢ by ¢ - (uo q), we can assume
¢ € §(2), then direct computation shows g ¢ is also £n|-|*-unstable, therefore, the result follows
from the fact that Ix,, is a £n|-|*-stable distribution. The fact that it supports in the closure of the

orbit of X follows from Lemma 5.5.

t
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Remark 5.9. When X is central or regular semisimple, we then have two definitions of Ix in
Subsection 5.1 and 5.2 respectively, these two definitions coincide because, when a € Ax5(F), the
descent construction associated with a is given by H = Hy = GL, and tg = t; = id. And
when a € A(F) is central, the descent construction associated to a is given by Hy = {1} and

k =1,F; = F,n1 = n, therefore we also have H = GL,, and 1y = ¢ = id.
When X € QICL L(F)or X e Qﬁ;f(F ), the distribution can be defined in a more direct way.

Proposition 5.10. Let X € gfg+(F) (resp. X € gfaf(F)), then for ¢ € ng(F) the integral
(5.19) / p(X - 9)E(9)n(g)lgl*dg
GLn (F)

is absolutely convergent when Re(s) > —1+1 (resp. Re(s) < 1—21), and coincides with Ix(p,&, s)

in the convergence domain.

Proof. We choose a non-negative function ¢’ € C.(Qy x GL,(F)) such that for any (Y,g) €
Qg x GL,(F), we have

(s (Y) - g)| = (Y - h,h~tg)dh.
H(F)

For s € C, let Yy s € C'C(E(F )) be the non-negative function defined by
via(¥) = [ W (Vg)ldetg "y,
GLn (F)
Then the absolute convergence of the integral (5.19) is equivalent to the absolute convergence of
Y s(Y - h)|det h|°dh
H(F)

which follows from and Proposition 2.3 (2) and Proposition 5.1 (although in Proposition 5.1, we

require the functions are Schwartz, but the proof of part (1) only needs the condition that the

functions are in C.(h(F'))). After the knowledge of absolute convergence, Fubini theorem implies

that the integral (5.19) coincides with Ix(p, €, s) in the domain of convergence. O

5.2.1. A wariant. We provide a variant of the construction above, replacing g/El by gl,+1. Recall
that B = gl,,,; / GL, and we have a canonical identification B = A x F induced by the map (2.10).

Z) € gl (F), we define

A
For a regular element X = (
u

LX(Sv 6) = L(A,v,u) (37 f)a
where the right-hand side is defined in (5.14). For ¢ € S(gl,,1(F)), and s € C which is not a pole
of Lx(s,§), we put

IX((,O,{, 8) = I(A,v,u) (Qoda g, 3)7
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where @q € S(gl, (F)) is defined by

A o
de(Alvv/7u,) = ( / U) )
ud

Remark 5.11. By definition, it is easy to see that Ix admits similar properties as those listed in

Proposition 5.8.

5.3. Orbital integrals on the group. Let f € S(G/(F)) and s € C, we define f5 € S(S(F)) by
(5.20)
S = Jaor) St (r) Fhyt A v (@) ho s ) (ha)ldet [P (v (@) honan), - 1 odd,
le(F) fHQ’nJrl(F) f(hflv hfly_l(x)h2,n+1)£(hl)’det hl |8, n eveln.
Fix v = (Yn; Mnt1) € Greg(F), let z = ay) € S(F), and let b = ¢(x) € B(F). Choose 0 € E*
with 00® = 1 such that € S?(F'), so the Cayley transform ¢, is defined. We use ¢, to transport
fS to a Schwartz function f on gl 1 (F): pick uw € CX(B?(F)) such that u(b) = 1, and define

$' € S(al 4 (F)) by
(5.21) FRX) = (u- ) (eo (X)),

and extends f' to an element of S (gl,,41(F")) using extension by zero, we still denote it by 7o

We put an L-factor by
L’Y(Sv g) = chl(z) (87 §)7
and for s € C which is not a pole of L(s,§), we put

[¢ (ac)( 3[7573)/"(777,7;41_1) n odd

¢ (:v)( Sg[agvs) n even

I7(f,€,8) ==

Note that, by Proposition 5.8 (5) (see also Remark 5.11), the definition of I does not depend on
the choice of u € C°(B7(F)).
We say f € S(G/(F)) is (£]-|%,n)-unstable, if for any v € G.,(F'), the orbital integral

/ / 1 'yh2)|deth1|s§(h1)n(h2)dh1dh2
Hy (F) JHa(F

vanishes. A distribution I : S(G'( )) — C is called (£|-|%,n)-stable if I(f) = 0 for any f that is
(&]-|, m)-unstable.
We now list the properties of If.

Proposition 5.12. We have the following assertions

(1) The function s — L~(f, &, s) is meromorphic, and the pole is contained in the pole of

L'Y(S7£)'
(2) If s is not a pole of L(s,§), then I7(-,&, s) is continuous.
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(3) As a function of s, for any f € S(G'(F))
, 19(f,6,5)
I7%(f,€,5) = m
1s entire.
(4) If F is non-Archimedean with ring of integer O, suppose that we can choose o such that
e &£.n and p are unramified,
e 270 € 0%,
v € G(0),
ag € Ay (0),
o X = ¢ !(x) satisfies the condition of (4) in Proposition 5.8.
Then IS (1ar(0),§:8) = Ly (5,6)
(5) For any s € C which is not a pole of L~(s,§), I5(-,€,s) is a {n|-|*-stable distribution and
supported on the closure of the Hi(F') x Ha(F) orbit of .

Proof. Part (1) follows from Proposition 5.8 (1) and the fact that s — f&' is holomorphic and
valued in S(gl,1(F)). (2) and (3) also follow from their corresponding part of Proposition 5.8.
Put f = 1g/(o) Under the condition of (4), one directly checks that 5= Ig(p) for any s € C and
I9(f,€,5) = Ica(x)(1g7;(o),§, s). Therefore, part (4) follows from Proposition 5.8 (4), and part (5)

also follows from Proposition 5.8 (5). O

Remark 5.13. It is expected that I depends only on (but does not depend on o), for example,
the following lemma shows that this holds when v € G/, (F) or G (F'), but the author does not
have a proof now.

However, we can show that L, is independent of the choice of o, for the following reason: for
any sop € C the order of the pole of L,(s,§) at s = s is the maximum of that of I7(f,§,s) as
f runs through elements in S(G'(F)). This follows from Corollary 5.3 (3), and this quantity is

independent of the choice of o.

When v € G/, (F) or v € G'_(F), I, can be described more explicitly. The following lemma can
be proved using the same strategy as that in the proof of Proposition 5.10.

Lemma 5.14. We have the following assertions:

o [f~ is reqular semisimple, then
B = [ ph e et s P dhidh,
Hy (F) JHa(F)

where the integral converges absolutely for any s € C.
o Ifye G/ (F) (resp. G(F)), then the integral

/ / F(hy 'yh2)€(ha)|det b [*n(h2)dhidhs,
1, (F) J ()

is absolutely convergent for s € H 1 (resp. s € Hoy_ 1) and equals I5(f,§, s) there.

<-1+1
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In particular, in these cases, the definition of If;(f,f, s) does not depend on the choice of o

6. GLOBAL THEORY II: REGULAR SUPPORTED FUNCTIONS

In this section, we set back to our notation in Section 4. So F' will be a number field. The main
result in this section is Theorem 6.1, which computes the geometric side of Jacquet-Rallis RTF

when the test function is regular supported at a place.

6.1. Global orbital integral. Fix an additive character ¢ : F\Arp — C*, for each place v of F,
the local component ), : F,, — C* of 1) determines measures on various algebraic groups over F,
as discussed in 5.0.1. If F'/F is a finite extension, we put ¢ o Trp /F as the additive character
on Aps and it can be used to define measures on various local groups over F! where w is a place
of F’. For any reductive group G over F', we write Ay, for the leading Laurant coefficient of the
Artin-Tate L-function Lg(s) associated to G (See | , 2.3.2]). For m > 0, the Tamagawa

measure on GL,,(Ag) is given by

*,—1
= AdLm,F/ Hdgw.
w

In this case, Acr,, ,, = G (1)¢p(2) - Cpr(m) where (f(1) denotes the residue of (r(s) (the
completed Dedekind zeta function) at s = 1, and the product runs through the places of F”.

We consider the three cases for a group G acting on X as in (2.12), excluding the case (G, X) =
(GL,,S). So the notation G and X will mean any pair (G, X) in these three cases. Let £ : A, — C*
be a strictly unitary character. For a place v of F, an element v € X;eo(F) and f € S(X(Fy)),
in Section 5, we have defined the local factor L,(s,&,) and regularized orbital integral I,(f,&,,s)
(If G = H; x Ha, it depends on a choice of a norm 1 element o in F,, which we assume it comes
from a global element, and it should be denoted by I7, similar for the notations later). We will
denote them by L., and I, here. Using the compatibility of descent and base change (see the
last sentences of Subsection 2.5), the local factor L., is the local component of a global L-factor
L (s,&) (which is defined by the global analogue of (5.12)). For f € S(X(F,)), we put

I’y,v(f, fva 3)
Ly (s, &) .

For f € S(X(A)), if f = ®f, is factorizable, by results in Section 5, Ig,v(fv,gv, s) = 1 for almost

all places v, hence we can define

Ifhy,v(f? Svs 8) =

I5(f,¢,9) H o(for &, 5)

The definition of I5 extends by continuity to any f € S(X(A)). We then define

(6.1) (f7£¢ s):=A *_IL (575)15(f7575)-
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By definition, I,(f,&,s) depends only on the value of f on the G(A)-orbit of v and for any
g€ G(F), L.4(f) = I,(f), and when X = G',G = H; x Hy, it depends on the choice of norm one
element o.

The construction directly generalizes to the product of cases we consider. Fix a € A(F) we
therefore, have E as discussed in Subsection 2.5. Then for any ¢ € S (H(A)) and regular element
Y e H(F), we can define Iy (¢, €, s) in the same way.

6.2. Main result. We now state our main result.

Theorem 6.1. Let f = f,f” € S(G'(A)) with f, € S(G'(F,)), f* € S(G'(AY)) and supp(f,) C
Greg(Fy), then for b € B(F), we have

(6.2) L(f,&,9) ZI" f,€,5)

Where I, is the distribution from relative trace formula in Theorem 3.1 (2), and IS is defined in
(6.1), the sum runs through all the representative of Hi(F) x Ha(F) orbits in G} (F) N Gleq(F).

reg

We will derive Theorem 6.1 from a Lie algebra version of it.

Proposition 6.2. Let g denote either gl, , or g/[v Let ¢ = pup¥ € S(g(A)) with ¢, €
S(g(Fyv)), ¢" € S(g(A?)) and supp(py) C reg(Fy), then for a € (g/ GLy)(F'), we have

Where 1, is the distribution from relative trace formula (see Theorem 3.2 and Remark 3.3) and Ix
is defined in (6.1), the sum runs through all the representative of GL,(F') orbits in gq(F) N greg(F).

Fix a € A(F). By the descent construction in Subsection 2.5, there is H which is a product of
gl,, i, of smaller size such that there is ay € A% maps to a under the étale map 14 : Ay — A.

We first show a version of Proposition 6.2 for ag.

Lemma 6.3. Let ¢ = @,p" € S(H(A)) with ¢, € S(f)( v)),p’ € S(h(A”)) and supp(p,) C

Ereg(Fv), then we have
(6.4) aH gp 57 Z[X 0, 57

Where 1,,, is the distribution from relative trace formula (see Remark 3.3), the sum runs through

all the representative of H(F') orbits in HaH (F)N Ereg(F).

Proof. We can assume ¢ is a pure tensor ®¢,, and each ¢, is of the form ¢, = ®f:0g0v,i by continuity,
where o, ; € S(gl,,(F3)). Put ¢; = @p,; € S(J;(AFZ.)), so that ¢ = ®¢p;. Therefore,

aH 90 57 HIa'L 9027517
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and

ZIXSOS’ H ZIX 9017527 )

=0 i
where &; := { o Nm(gg,.F,)/E, and in the sum on the right-hand side, for each 0 <7 <k, X; runs
through the regular orbits in gl, a(FZ) Therefore up to possibly replacing F' by Fj;, we are
reduced to prove Proposition 6.2, for g = gff; and a is either central or regular semisimple.

If a is regular semisimple, then both sides of (6.4) equals to

/ (X - 9)&(g)n(g)|det g|*dg,
GLyn(A)

therefore (6.4) holds. We now assume a is central. By Lemma 2.2, all regular orbits in the fiber of

a are OT(a) and O~ (a). Note that we have the following open cover of al, (Fy):

n,reg

g[n reg(F’U) = g[n +(FU) U g[n,—(F’U) U (g[n,reg \ g[n@)(Fv)‘

We choose functions ag, a4, a_ € Coo(g[ (Fy)) (a partition of unity), such that

n,reg
o oy +a_+ag=1,
o supp(an) C (gl reg \ 8l o) (o), supp(ay) C gl,, 1 (F,),supp(a_) C gl, _(F,),
e for any f € S(gl,, reg(Fv)) and any i € {0,+, -}, oy f € S(gl, reg(Fv))-
The existence of these functions is easy for non-Archimedean v and for v Archimedean, see | ,
Theorem 4.4.1].
For i € {0,4,—}, let ¢; € S(QIE;(A)) be the function (a;p,) - ¢”. Then since the distribution
I,(-, &, s) is supported on g?[;’a(A), we see that

(65) Ia(9007§7 5) =0
Since @ satisfies the assumption of Theorem 4.3, by part (3) of this theorem, we see that for

s € H<_1

(6.6) Io(p4,8,8) = /GL “ 0+ (X - 9)&(g)n(g)ldet g|*dg :/G 0+ (X - 9)€(g)n(g)|det g|°dg,

Ln(A)

where the integral in (6.6) is absolutely convergent. That is, the infinite product
Agij H IX-&-,’U(SOUa 5117 S)
v

is convergent when s € H._1, and is therefore equals to Ix, (¢,&,s). Since both I,(¢4,&,s)
and Ix, (p,€,s) are meromorphic in s, we see that whenever they are holomorphic, we have
Io(p4,€,8) = Ix, (¢,€, 5). By asimilar argument, I,(p—, &, s) = Ix_(¢—,&,s). Together with (6.5),

we see that
Ia(SO7 57 S) = Ia((p+7 67 3) + Ia(gO_, 5? S) + Ia(9007 §7 S) = IX+ (Spv fa 8) + IX7 (SD7 57 S)a
which is exactly the equality we want for the central element a. O

Now we give the proof of Proposition 6.2.
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Proof of Proposition 6.2. We first show the case when g = gA[; We will use the notation introduced
in Subsection 2.5.

Let S be a sufficiently large finite set of places of F', containing all archimedean places. For
any v € S, pick an open neighbourhood w, of a in A(F,) and a neighbourhood wg, of ay in
Ap(Fy) such that w, and wp, are semi-algebraic if v is Archimedean and ¢4 : A} — A induces
an isomorphism wp,, — wy. Let wg := [[,cqwv and wys =[], cgwrh,o. We choose u € CZ°(ws)
such that u(a) = 1. Denote (s (resp. Qps) be the preimage of w (resp. wp,) under the quotient
map ¢ (resp. qm)-

Since both sides of (6.4) only depend on the value of ¢ on QTI;L’Q(A). After replacing ¢ by
¢+ (uogq) and enlarging S, we can assume ¢ = pg® 1~ a(0%)" where g € S(g/\[;(Fs)) We can choose
¢’ € S(Qms x GL,(Fs)) (see Subsection 5.2) such that for any (X, g) € Qus x GL(Fs), we have

Pn(X)9) = [ (X a(w)g)an
Hs(F)

For any Xy € 0y s and s € C, we put
pusaXi) = [ (Xu.g)éalo)m(o)detgl*dy.
GL,, (Fs)

Define ¢y s € S(E(A)) by vHs = PHss @ 15(03 )- Up to enlarging S, by | , Théoréme 6.4.6.1],
F
we have
Ta(¢,6,8) = Adr, Adrlay (9r,s,6, 5).

(In loc. cit, this result is only proved for the case when ¢ is trivial and s = 0, but the same proof
works for general case). By our construction of regularized orbital integral Iy in Subsection 5.2,

for any regular element Xy € H(F ), we have

Ixy (prs,6:8) = Agr, Alrx(p,€. ).
Therefore, Proposition 6.2 follows from Lemma 6.3 and Proposition 2.3. ]

Now we can prove Theorem 6.1.

Proof of Theorem 6.1. Choose o € E such that Nmp,p(0) = 1and b € B?(F). So Cayley transform
¢s(b) € B(F) is defined.

Choose a sufficiently large set of finite places S of F'. We assume that f is of the form fs® 1G/(O% )
where fs € S(Fs), and we define fgfs by a similar formula as in (5.21), replacing F' there by Fgs, and
we put f8' = ngs ® 11 os) € S(gl, (A)). When § is sufficiently large, by | , Lemme 14.4.4.2],
we have

I(£.68) = A5 AL Ay, L,y (F).
Let v € G/(F) be regular element, by our construction of I7(f,¢,s), we have

IS(f,€,8) = Af T AL AGL Ty (o) (PP €, 5).

Therefore, the result follows from Proposition 6.2. ([l
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7. LocAL THEORY II: LoCcAL SINGULAR TRANSFER

We retain the notation in Section 5 so that F' is a local field of characteristic 0 and E/F is a
quadratic étale algebra. Recall that in Section 5, we have defined, for any f € S(G/(F)), and any
v € Gieg(F) and character £ : E* — C*, a regularized orbital integral I7(f,&, s) and a normalized
version Ifyr’u( f,&,s) which depends on a choice of norm one element ¢ in E.

In this section, we will study a transfer relation between I (f) and semisimple orbital integrals
on the unitary groups. We will first introduce orbital integral unitary groups and matching in

V' in 7.3, which is a unitary analogue of

Subsection 7.1 and 7.2, we then review the descent on u
what we have done in Subsection 2.5. Then we study the Lie algebra version of local singular

transfer in Subsection 7.4 and the group version in Subsection 7.5.

7.0.1. Notations and measure. Let H denote the isometric classes of n-dimensional E/F Hermitian
space. Let (V,h) € H, denote the discriminant of V' by disc(V'), which is the determinant of the
gram matrix of V' in any basis, regarded as an element of F* /Nmpg,p(F*). Let U(V') be the unitary
group associated to V, and let V 4+ Eeg be the Hermitian space formed by orthogonal direct sum

of V and 1-dimensional FE/F-Hermitian space (Eeq, hg) spanned by eg with hg(eg, eg) = 1. Define
GV =U(V) x UV @ Eeg), HY = (h,diag(h,1)),h € U(V).
So HY is a subgroup of GY isomorphic to U(V). The group HY x H acts on the right on GV by
g - (h1,ha) := hy ghs.

For any v € GV (F), let (HY xH"), denote the stabilizer of v under this action. We call v € GV (F)
semisimple (resp. regular semisimple), if its HY x HY orbit is Zariski closed (resp. is semisimple
and has trivial stabilizer). We call any U(V')(F') orbits of a semisimple element a semisimple orbit.
We write GY, for the open subset of GV consisting of regular semisimple elements.

Let u" be the F-subspace of Endg(V) consisting of self-adjoint operators, so it is 7 times the
Lie algebra of U(V), where 7 is any purely imaginary element (i.e. Trg/p7 = 0) in E. We put

u=u" x Resg/pV, which is an F-vector space with a right U(V) action by

(A,0)-g= (9" Ag,g7 ).
1%

When we want to emphasize the rule of the Hermitian form h on V, we will also write u® := V.

For X € i (F), we denote its stabilizer under this action by U(V)x. An element X € u" (F)
is called semisimple (resp. regular semisimple), if its orbit under the U(V') action is Zariski closed
(resp. is semisimple and has stabilizer). Let 1Y, denote the open subset of ¥ consisting of regular
semisimple elements.

As in 5.0.1, we fix an additive character ¢ on F. For any m-dimensional Hermitian space V'
over F, choose a finite extension F”’/F such that U(V’) is split over F. (e.g. F' = F if E is split,
and L = FE if F is a field). We have an embedding U(V’) — GL(V’). We put the measure on

U(V')(F) defined by the F’-valued differential form [, L(i,n") det(g;;)~™ A dgi; on GL(V')(F")
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pulled back to U(V')(F). We put the product measure on GV (F), and put the Haar measure on
HY(F) via the natural identification H(V) = U(V). Note that when E = I x F, the measure on
U(V) = GL,, coincides with the measure we gave in 5.0.1.

Let F'/F be any finite field extension, we put an additive character ¢’ on F” by v o Trps/p.
So that we can also put a measure on U(V’)(F’) for any (F ®p F')/F’ Hermitian space V'. For
V e H, let v € GY(F) or X € u¥(F) be a semisimple element, we will see in Subsection 7.3
that the stabilizer of v or X is a reductive group which is isomorphic to finitely many product of
Resp//p U(V'), we choose the measure on (HY x HY).(F) or U(V)x(F) to be the product of the
measures we have fixed.

We put a non-degenerate bilinear form on " (F) by ((A4,v), (B,w)) = Tr(AB) + Trg/ph(v, w).
For ¢ € S(Y(F)), we then define its Fourier transform Fp" € S(u (F)) to be

Fo(Y) = / P,

where the measure on ¥ (F) is chosen to be self-dual.

7.1. Orbital integral on the unitary groups. For a semisimple element v € GV (F) and f €
S(GY(F)), we define its orbital integral by

| fo-
(HY xHY )5 (F)\(HY xHY)(F)
The semisimplicity of v guarantees h — - h is Schwartz function on the orbit of v, so the integral

is absolutely convergent. JX only depends on the semisimple orbit o of v. Let o be a semisimple

orbit, we write

where v is any element in 0. When « is regular semisimple, the orbital integral is then given by

nn= | f(3- hyah.
HY (F)xHY (F)
For a semisimple element X € 1" (F) and for ¢ € S(1(F)), we define its orbital integral by
Tx(o) = TK(0) = [ p(X - h)dh.
U(V)x (F)\U(V)(F)

The integral is absolutely convergent for the same reason and depends only on the orbit U(V)(F')
of X. Let o be a semisimple orbit in &V (F), we define J,() to be Jx (), for any X € 0. When X

is regular semisimple, this reduces to
@)= [ el nan
UWM)(F)

For A € F, we write Z, for the element () -id,0,0) € u". The subspace of 1V formed by Z, is

the center of 1" under the U(V) action. Its image in A coincides with the center we considered in
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Subsection 2.5. By definition, Zy is semisimple and for ¢ € S(u" (F)) we have
Iz, () = ¢(Z).

7.2. Transfer of functions. The GIT quotient GY'/HY x HY (resp. " (F)/ U(V)) can be canon-
ically identified with B (resp. \A), (see | , Lemme 15.1.4.1] and Subsection 8.1). For vV =
(z,y) € GY(F) and v = (gn, gn+1) € G'(F), we put s = (g, ' gn+1)(95 ' 9ns1)>~ " and g = a7 y.
Then ~ and " have the same image in B(F) if and only if s and g have the same characteristic
polynomial and efLHsienH = h(g'eq,ep) for 1 < i < n.

If we use the identification (2.11), then for (4,v) € 1V, the quotient map gy : 1 — A can be
identified with

(7.1) (A, ’U) — (Tr(/\iA)lgiSn, h(AiU, U)ogigz;l).

So that for X = (A,v,u) € gl (F) and XV = (4, v Y €1, X and X" have the same image
in A(F) if and only if A’ and A have the same characteristic polynomial and uA%v = h(A%v,v) for
1< <n.

These identifications induce bijections

Gl(F)/Hy(F) x Hy(F) +— | | GY.(F)/HY(F) x HY(F),
VeH

and
(7.2) 0l s (F)/ GLn(F) | ] T(
VeH
We say v € Gl (F) (resp. X € ng(F)) matches with vV € GY.(F) (resp. XV € W), (V)) if they
correspond to each other under the bijection above, equivalently, their image in B(F") (resp. A(F))
are the same.

We define the transfer factors

O+, Q7 L Gl (F) — C*,and wh,w™ : gl  (F) — C*

_ EFES R
. (v ) ()2 p(A%(x))  noodd
QO (Yn> Ynt1) = n )
(@)™ 2 p(A%(x)) n even
where x = v(7, 'y,41) and
W (X) = n(6°(X)).
where € € {+, —}.
We say that f € S(G/(F)) and (fV € S(GY(F)))yen are plus-transfer (resp. minus-transfer) of

each other, if whenever the element v € G/ (F) and 7" € G)(F) match, we have

T (fY) =97 () - L, (f) (vesp. T (fY) = Q7 (7) - L, (f))

We write f <5 (fV)y (resp. f <= (fV)v) if they are plus-transfer (resp. minus transfer).
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Similarly, we define ¢ € S(&(F)) & (¥ € S@Y(F))ven (resp. ¢ < (¢V)y) if whenever

X € gl, (F) and XV € w(F) match, we have
Txv(9") = wh(X) - Ix () (resp. Jxv(p") =w™ (X) - Ix(p))

Lemma 7.1. Given ¢ € S(g/\[;L(F)) and ¥ € SWY(F)) for each V € H. Then

p (V) = e (ndise(V)) - ¢")

Proof. For (V,h) € H and XV = (A4,v) € uV(F), define d,(X) = det(h(A™7~2v,v)1<; j<n). For

X € g/\[;(F), we have defined d,,(X) in (2.13).

Now ¢ & (¢") if and only if for any matching of regular semisimple elements X and X", we

have
Txv (") = wh(X)Ix ().
Note that d,(X) = det(67(X)d~ (X)), so the condition above is the same as
Tev (@Y )n(dn(X)) = w™ (X)Ix ().

The matching of X and X" implies d,,(X) = d,(X"). Moreover, n(d,(X")) = n(disc(V)), since

(v, Av,---, A" 1) is a basis for V. So the last equation is equivalent to
Txv (9 )n(dise(V)) = w™ (X)Ix(p),
which is equivalent to ¢ <= (n(disc(V)) - ¢"). O
We also recall the deep results of Zhang and Xue:

Theorem 7.2 (Zhang [ ], Xue [ ). Given ¢ € S(gA[;(F)) and ¥ € SWY (F)) for each
V eH. Then

o (V) = Fo s (n<disc<v>>”e<n, ,wWwV)

Remark 7.3. Suppose that for each 0 < ¢ < k, we have a field extension F; /F. Write E; = F;Qp F,

and suppose that for each i, we have an n;-dimensional F;/F; Hermitian space V;. Let

1
2

k k
g= HResFi/Fg[nini, u= HResFi/FiIVi.
i=0 i=0
We write 1; := npgp,/r, = 10 Nmp, /g for the quadratic character on F;*. For X = (X;) € g(F),
let w*(X) := [10_y mi(det 6% (X7)).
The orbital integral and transfers then directly generalize to ¢ € S(g(F)) and ¢¥ € S(u(F)).

7.3. Descent on u.
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7.3.1. Descent construction. There is a descent construction on &¥ which is similar to the descent
for gfa as we discussed in Subsection 2.5. Recall that we have a quotient map ¢ = ¢ : 1V — A.
For X = (A,b) € uV(F), denote d,(X) = det(h(A™7=2b,b)1<; j<,. Then d, descends to a function
on A and coincides with the function in (2.13). The functions d, induce a stratification u""(") on
1V in the same way as we discussed after (2.13).

Fix a € A"(F). Let Ay := é[:/ GL,, A? := g/[;:/ GL;,,—,. As we discussed in Subsection 2.5,
a can be written uniquely ¢(ag,a’) with ag € Ag(F),a® € A’(F), and a° is determined by a
polynomial P € F[z], which factorize as P = P}"* --- P;'*. Let F; = F[z]/(P;) and a; be the image
of x in F;. Put F; = F; ®p E, and we fix an r-dimensional F vector space V and n;-dimensional
E; vector spaces for each 1 < i < k. Let H” be the isometric class of the family (hi)o<i<n, where

each h; is a non-degenerate Hermitian form on V;. Take h” = (h;) € H°, put

(7.3) (V0,10 @ReSE 15(Vi, hy),
=1

where Resg, /g (Vi, hi) is the E/F Hermitian space given by (Resg, gV, Trg, /g 0 h;), and & denotes
the orthogonal direct sum. We also write hgg for the E vector space Vo @ VO equipped with the
Hermitian form ho & h>0.
Note that Ay and A° can be canonically identified with 115/ U(Vp) and 1V" / U(V?) respectively.
Put

Upy := U(Vo, ho),  Up, := Resp,p U(V;, by), U, :—HUhﬂ Uy :—HUh

For each 1 < i < k, we regard 1/ as an F-vector space and define

k
W H @ = [[
ut =1 lu
i=0
We then have GIT quotients:

k k
A=) Up, A =000, 2 [[ A, Ap =07/ Up = [ A
=0

i=1

Using (7.3), we have embeddings:
bo 2 0% — U(VO), g0 00 — oV

Let V' € H such that there exists an isometry

i hly 2 V.
The map 7 then determines an embedding
(7.4) Lot ) @V Y
similar to what we have considered in (2.14), see | , (8.2.2.4)]. It descends to a map on the

GIT quotient which coincides with ¢ in (2.16).
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Let "0 be the open subset of "0 consists of (Aj,v;) with det Q;(A;) # 0 for all i # j,

where Q; is the characteristic polynomial of A;, it descends to an open subset ‘A%b/ of .A?Lb. Denote

s = ﬁéT) x W04 it descends to a subset A, of Ap». Composing ¢ in (7.4) and 0, we get a map

W T
Ly U —Uu,

it descends to
LA A;zb — A
Note that although the embedding ¢, depends on the choice of the isometry ¢, ¢ 4 does not, and it

coincides with the map ¢4 introduced in Subsection 2.5. The isometry ¢ also induces an embedding
Ly th — U(V).
By [ , Appendix BJ, 14 is étale, and we have a pullback diagram

W xUn U(V) —— 1V

(7.5) l l

/
hb A

where the top horizontal map sends (X, g) to ¢ (X) - g.

e The right vertical map is the quotient map, the left vertical map is induced by the quotient
map W — A%, trivial on the second component,

e The bottom horizontal map is ¢4, the top horizontal map sends (X, g) to ¢,»(X) - g.

Since ag € Ag(F) is regular semisimple, the bijection (7.2) implies that there exists a unique
~ EO
Hermitian form hy = hg® on Vp up to isometry such that there exists Xy € u?so (F') mapping to
ap € Ao(F). Let a; be the image of Z,, in A;(F') and a;, = (ag,a1,--- ,ax) € Ay (F).

Let O, be the set

(7.6) {(V,0) | V € H,0 Cu)/(F) is a semisimple orbit}.
By [ , Corollaire 8.4.6.2], there is a bijection
(7.7) {h" = (h;) € H’|ho = K3} Oy,
sending R’ to hga together with the orbit of ¢, (X0, Za,, - , Za, ), note that this orbit is independent

of choice of the isometry i.

7.3.2. Descent and transfer. Fix a € AU")(F). In Subsection 2.5 and in 7.3.1, we have recalled
the descent construction with respect to a in the general linear setting and the unitary setting
respectively. In the setting of Subsection 2.5, we fix a basis of V; so that 57 and §~ are defined. By

construction, Ay and A;, can be canonically identified for any R’ € H’. Under this identification

/
hbo

Since ¢ 4 is étale and sending ap to a, we can choose an open neighborhood wy of ay in Ay (F)

A corresponds to A’ . ap corresponds to as.

and an open neighbourhood w of a in A(F') such that
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e If F'is Archimedean, both w and wy are semi-algebraic.

e wy — w is an isomorphism of Nash manifolds if F' is Archimedean, and isomorphism
of analytic manifolds if F' is non-Archimedean. (See | , Proposition 8.1.2] for the
Archimedean case)

e There are ¢, ¢™ € {+1, -1}, such that for any a’ € wg N Ap,s(F) and X € EG(F), we have

(7.8) wh (X)) =ctwh(X), w (X)) =c w (X).

where w™ (X) and w™(X) are defined in Remark 7.3. (See | , Lemma 3.15]).

Let ©Q and Qy be the preimage of w and wy under the quotient map éi; — A and E — Ag

respectively. Then the top horizontal map in diagram (2.20) induces an isomorphism
(7.9) Qu xHE) QL (F) — Q, (Y, g9) — 15(Y) - g

of Nash manifolds when F' is archimedean and analytic manifolds if F' is non-archimedean.

Let h* € H’. Under the identification between A, and A, wp corresponds to wy, C Aj,(F).
Let Qy and €, be the preimage of w and w;, under the quotient map 1V = Aand i — Ay
respectively. By the general fact of group action of variety over local field, ' (F) xUne (F) U(V)(F)
is naturally an open and closed subset of (ﬁhb ! Un U(V))(F). Let Q{L/b be the image of €, U ()
UY(F) under the top horizontal map of (7.5). Then Q’{,b is independent of choice of i (thus only

depends on V and hb), and is an open and closed subset of {2y and we have an isomorphism
(7.10) Q xVEOUV(F) — QY (Y,g)— (Y) - g

of Nash manifolds when F' is archimedean and analytic manifolds if F' is non-archimedean.
Let H}, be the subset of H’ consisting of > = (h;) € H’ such that hg = hJ° and V = P’

By [ , Lemme 13.4.7.1], shrinking w if necessary, we have a disjoint union decomposition
(7.11) Q= || ob.
RbeH!,

For ¢ € §(Q), from (7.9), we can choose ¢’ € S(Qy x GL,(F)) such that for any X € Qp and
g9 € GLn(F)
Pn(X) )= [ (X)),
H(F)
We define i € S(Qp) by

o (Xp) = / & (Xu, 9)1(g)dg.
GL,(F)

where X € Qp.

Suppose that for each V € H, we have a function p" € S(Qy). For each h’ = (h;) € H°, we

define ¢ € S () as follows. If hg # hy°, we put gohb = 0. Otherwise, choose an isometry hga =%
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for a unique V € H, and from (7.10) and (7.11), we can choose a function gphb” € S(Q xU(V)(F))
such that for any X € Q,, and g € U(V)(F)
b _
(0 9= [ R g)an
th (F)

Then we put
b b
¥ (X) =/ ©"(X, g)dg,
U(V)(F)

where X € Q,,. We have ¢’ € S(Q,,).

We have the following lemma.

Lemma 7.4. Let p € S(Q) and for eachV € H, let ¥ € S(Qy). We have the following assertions:

(1) If o & (QDV)VGH, then

+ b
cTon < (" ) pegp-

(2) If ¢ = (SDV)VGH, then
— — b
o < (" e

Where we recall ¢* is defined in (7.8).

Proof. We only prove (1), the proof of (2) is the same as (1). Take any a’ € A s(F) = Aps (F),
assume that a’ is the image of some elements in T (F).
Take any Xp € by (F), X, € ’LVLZT (F'), we need to check that
b
w+(XH)IXH (SDH) = ‘]Xb ((ph )
If o/ ¢ wy = wyy, then by definition

b

IXH(‘:OH) = JXb(SOh ) =0.

Thus we only need to consider the case when a’ € wy = wyy. Since wy C AYy, by | , Lemme
3.4.1.1], we have 14(a’) € Ays(F). Using the definition of ¢ and ¢!, we check directly that

b

(7.12) Ixg(en) = Lyx)(e), Ty (") = Jbub(xb)(wv)
The image of 5(X) and ¢,»(X,) in A(F) are both t4(a’), hence their orbits match. The lemma
then follows from the definition of transfer and c*. O

We also record a lemma whose proof is elementary.

Lemma 7.5. Let u € C®(w), ¢ € S(%(F)) and for each V. € H, let ¢V € S@Y(F)). For
= {+7 _}7 Zf‘P é (¢V)’ then

- (gou) € S(N) & (cpv “(qv ou) € S(y)).

Proof. This is proved by a direct computation. ([l
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7.4. Singular transfer on the Lie algebra. Let X € ngl(F) be a regular element and ¢ € S(QIEL)
Recall that we have defined Ix (¢, &, s) in Definition 5.7.
The function Ig((gp, 1px,s)/Lx(s,1}) is holomorphic at s = 0. We write Igc(go) for IE(((,O, 1gx,0).
We now define some constants related to Proposition 7.6 below. Suppose F” be a finite extension
of F,and E' := E' ®F F be a quadratic étale algebra over F'. Denote 1/ := ne/roNmp g = ng e
and ¢’ =1 o Trpr/p. Let (V' h') be an n'-dimensional E'/F’ Hermitian space. We put

n/
. ’ 1 n(n/+1) n'(n'—1)
by = T — i 0)~ (dise(V/)" e ) =7 /(1)
i=1
and
'I’Ll . 1 /( /+1) /( /_1)
ey = ¢ - (disc(V')) = He(l — i, )y (disc(V))" 6(§,n’,¢’) = n(=1)" 2z
i=1
Let b’ = (h;) € H* and let € : {1,--- ,k} — {+,—} be a map, we put = e, cf%,hi)' Let
0 C uY(F) be a semisimple orbit, by the bijection (7.7), o is the orbit of ¢,, (X0, Zay, "+ » Za,,) for

some h’ = (h;) € H3, with Xj € Uy (F). We then put
Co 1= Cpp-

Let X € ng;(F ) be a regular element with ¢(X) = a. We use the descent construction as
discussed in 7.3.2. X can be written of the form ¢y(Xp) - g, where Xy = (Xo g, ) € Qp is a
regular element, and g € GL,,(F'). we define a constant cx € {+1} by

ex = c'n(g)w™ (Xo,m).
where ¢ is defined in (7.8). Finally, if X € g/E(F) is a regular element of type e, we put
CX,0 = CXC5.

Now we state our main proposition

Proposition 7.6. Let X € gA[;(F) be a regular element with q(X) = a. Suppose ¢ € S(QIE;L(F)) —
¥V € SWY(F)))ven, then
L) = > exold (¥V),
(V,0)€0,
where we recall that the set O is defined in (7.6).

Proof. By definition, for any semisimple orbit 0. JY (¢") only depends on the value of ¢V on o.
By Proposition 5.8 (2), Ix(¢) depends only on the value of ¢ at the orbit of X. Let w be the open
subset of A(F') as introduced in 7.3.2. Take u € C2°(w) with u(a) = 1. Thus Ix(¢-(qou)) = Ix(p),
and for any o € Oy, Jo(¢") = Jo(¢" - (qv o u)). By Lemma 7.5, after replacing ¢ and (") by
¢ - (gou) and ¢ - (qv ou), we can assume ¢ € S(Q2) and ¥ € S(Qy).

Recall that we have defined pg € S(2y) and o € S(Qy,) for each B> € H* in 7.3.2. Choose

Xy = (Xou, Z5L, -, Z5) € Qg and g € GL,(F) such that X = 1(Xp) - g. From the definition
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of Ix(y) in (5.18), we have Ix(¢) = n(9)Ix, (¢pm). For o € O,, thanks to the bijection (7.7),
we can write o as the orbit of ¢ ,» (X0, Zay, s Zq,,), Where R = (hi) € H® with hg = hg and
Xo € ﬁ;‘g(F) Write X, = (Xo, Za,, -, Za, ), then we see that

Ix(") = / / " (X - by vu(h) " g)dhdg
UV)x (P\UW)(F) JU,, (F)

- / / / P (X - g (R'h) 7 g)dR dhdg
U(V)x (F)\U(V)(F) JUY (F\U,, (F) JUD, (F)

/ / (X - h)dh = Ty (™).
Uho

Recall if hg # hg°, then ¢ =0. By Lemma 7.4, ct oy <5 o
Thus we are left show that for any @1 € h(F) matches with (go}fb € S(ﬂhb(F)))hbe'Hb, we have

. b
W (Xom) Ik, (p1) = D SiTo(el).
hP=(h;)eH’
ho=hg0

We henceforth reduce to the case when both ¢ and <phb are pure tensors. The 0-th component is
regular semisimple, hence the equality follows from the definition of transfer. For other components,
we are reduced to the Lemma 7.7 below, which itself is a special case of this proposition. This
finishes the proof. O

Lemma 7.7. Let ¢ € S(g/;El(F)) & (V' € SWY(F)))ven and let X € F, we have

= Z eIz, (") and Iu (p) Z cydz, (¢
VeH VeH

Proof. We only prove the assertion for 1 uZ +- The case for I uZ, is parallel. It is clear that ¢ & (4,0}\/)
A

By Theorem 7.2 and Lemma 7.1 we haveA

- . n 1 | netn
Fipy < (n(dISC(V)) “6(77,5,1&) 2 fsoy)-

If we put

n

vH(s) = [ r(=is —i+ 10 ).

=1

Then

n

V()L g4 (s) = [ Llis +i,n))e(—is — i+ 1,0, )
i=1
is non-vanishing at s = 0 with value [[\_, L(¢,n")e(1 — i,7',%). Also note that w™(Z;) =

n(n—1)
n(=1)" =
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Combining the discussion above and (5.10), we see that

/N For(X)w™ (X)dX
al, (F)

n(n—1) 1

H;L:l L(,Lv 771)5(1 - ia ﬁi» 1/))

n(n=1) 1 / / )
) [Tizi LG, nY)e(X —i,0",4) Jau(r) oL, r) el Jo( )

By | , Lemma 5.2.1], the bijection (7.2) is measure preserving up to constant. More precisely,

I (¢) = Gin(=1)

= (un(—

suppose a measurable subset M corresponds to LIMy , then

vol(M) = IW vol(My).

Therefore, the expression for IuZ + () can be written as

n(n—1)

TI(_]') 2 / . n+1 1 n(n+1) v
n T (dlSC(V)) 5(777 771#) 2 FQD)\ (X : g)dng
[z et =47, 9) Vze;{ Y(F)/ U(V)(F) 2 U(V)(F)

=S [, 0 = ¥ G

Ver V(F) Ver

Thus the lemma, is proved. ]

We also record a lemma related to the proof above.

Lemma 7.8. Let V € H and let o C u be a semisimple orbit. Then the distribution J, is a stable
distribution, in the sense that if o € S(u(F)) such that all the regular semisimple orbital integral
of ¢ is 0, then Jo(¢) = 0.

Proof. Let ¢ € S(uV(F)) such that all regular semisimple orbital integrals of ¢ is 0. Take X € o,
assume that gy (X) = a € A(F). Replacing ¢ by ¢V - (g o u), we can assume ¢ € S(Qy). Taking
h® € H’ such that there is a semisimple orbit o® corresponds to o under the bijection (7.7). Then as
the computation in the proof of Proposition 5.8, J,(¢) = Jy» (cpb) and ¢ also has vanishing regular
semisimple orbital integrals, we therefore reduced to the case when o is a regular semisimple orbit
or a central orbit. If o is regular semisimple, J,(¢) vanishes by definition. If o is the orbit of Zj,

after a translation, we can assume A = 0. Then

T) = p0) = [ Fe(X)ax = | e(x - gagax.
uV(F) L (F)/U(V)(F) JUV)
By [ , 3.2.4], Fp also has vanishing regular semisimple orbital integrals, therefore the above
expression vanishes. 0

We introduce a variant of the results in this subsection. Recall from Subsection 2.4 that, B =
gl,11/GLy. For (V,h) € H, we put (V',h') = (V & Eeg, h & hg), where & denotes the orthogonal
direct sum and hg(eg, e9) = 1. We have an isomorphism of U(V') representations:

(7.13) W 2TV x F, A ((Aly, Aeg), b (Aeg, ep)),
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where U(V) acts on F trivially. We thus have a canonical identification 1"’/ U(V) 2 B. Semisimple
orbital integral J,(p") directly generalize to ¢V € S(u"" (F)). For X € gl (F), denote w*(X) =
n(0*(X)). Then there is an obvious notion of plus/minus transfer between ¢ € S(gl, 1 (F)) and
(©V) € SWY'(F))vew. For b e B(F), let Oy be the set

{(V,0) |V € H,o c uV'(F) is a semisimple orbit}.

For 0 € Oy, it projects to a semisimple orbit 0 € O, under the isomorphism (7.13), where a is the
image of b in A.

For X € gl,, . (F), let Y is the image of X in g/;\[;L(F) under the bijection gl = g/;EL x F. We
denote cx, := cy5. Then Proposition 7.6 implies that, if X € gl,,;(F) is a regular element with
q(X) = a of type ¢, and ¢ € S(gl,,11(F)) & (¢¥V € SV (F))), then

(7.14) L) = Y exodd (¢).
(V,0)€0,

7.5. Singular transfer on the group. We now deduce the singular transfer on the group from
the Lie algebra as we discussed in Subsection 7.4. Fix b € B(F), pick 0 € E*, with co° = 1, so
that b € B?(F). For f € S(G/(F)), let IJ*(f) := IS*(f, 1=, 0).

We use the Cayley map to relate the group U(V’) the the Lie algebra u'. Let 7,0 € E such
that 7¢ = —7 and 00 = 1. Let u¥"™ be the open subscheme of u"’ consists of Y € u"” such that
Y — 7.1 is invertible. Let U(V”)? be the open subscheme of U(V’) consists of g € U(V’) such that
g — o - id is invertible and G"*° be the open subscheme of G" consists of (z,7) € GV such that
x~1y € U(V')?. The Cayley map

14+ 77y

1% VT no
: T — UV Y—00——-—
u (Vhe, i p—

o

¢

defines a U(V') equivariant isomorphism between 17 and U(V")?, and descends to a map B7 — B¢
which coincides with the map induced by ¢, as in (2.3).
We denote

O, ={(V,0) |V €H,0c G}/ (F)is a H (F) x H (F) semisimple orbit}.

Let a = ¢;'(b). Note that there is a natural HY = U(V) equivariant isomorphism GY/HY =

U(V’). Since ¢/ is an isomorphism, the Cayley map induces a bijection O, — Op, which we also

denote by ¢,. For O € Oy and v € G"7(F), we denote x = v(7;, '7,4+1) and define a constant ¢, o
by

nt+1 _ n(n41)

(7.15) 0 = €ty (oy(@) 2 (v ) T (=207 T (1 = 7 e () T

sCo

Now we state the main theorem of this section
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Theorem 7.9. Let f € S(G/(F)) and for each V € H let fV € S(GV(F)) such that f <5 (fV).
Then for any regular element v € G} (F), we have

I = Y crolo(f).
(V,0)e0,
Proof. Let us denote ¢ be the quotient map G’ — B, for V € H, we denote ¢¥ be the quotient
GY — B. Since both I,(f) (resp. Jo) only depends on the value of f on G,(F) (resp. G} (F)).
Take u € CX°(B?(F)) such that u(b) = 1. After replacing f (resp. fV) by f - (uo Q) (resp.
V- (uoQy)), we can f € S(G"(F)) and fV € S(GV7(F)).
Let f5:= f5 defined in (5.20). Then fS € S(S?(F)). We define fU(V") € S(U(V')?(F)) by

0w = [ san

where z € U(V')(F).
Define ¢ € S(gly, 1 (F)) by

_n41 n(n+1)

pr(X) = [P (e (X))l (X)) (=207 1) 2 p(l —771X) ",

where X € gl7, (F). For V. € H and X € u""7(F) we put v (X) = YV (e (X)), then
pf € S(uV"7(F)). Direct computation shows if f & fV then ¢ & v
Let « = v(7;, "yn41). By the definition of I, and Jo, we have

_n+1 n(n+1) -1 .—-1

T p(=207Y) 7 p(l =1 e @) ITH(),

(1) = 1 ) (@)

iz
and
IS () = T oy (¢r)-

Then the theorem follows from the equality (7.14). O

8. FOURIER-JACOBI CASE

All the results in this article have their counterparts for the relative trace formula developed by
Liu | |. The proofs of the results in this section are parallel to their Jacquet-Rallis counterpart,

so we will omit their proofs.

8.1. Notations. Let F' be a field of characteristic 0 and let E be a quadratic etale algebra over F'.
We redefine G’ := Resg/p(GLy g X GLy g) X F™ x F,. We put

Sn ={x € GL, g | zz° = 1},

the map v : Resg/r GL,E — Sn,g gg~ "¢ identifies S,, with GL,, r / GL,, r. We redefine H; and
Haz to be the following subgroups of Resg,/p(GLy, g X GLy £):

Hi:=1{(9,9) | g € Resg/p GLy g}, Hz2=GL,rxGL,F.
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The group H; x Hy acts on the right on G’ by:
(g,v,u) - (b1, (ho,1, ha2)) = (hy ' gha, hyjv, uhs).
We redefine B to be the GIT quotient G’'/H; x Hy, it can be identified with the quotient (S, X
F" x F,)/ GL,, where GL,, acts by
(s,v,u) - h = (h~tsh, h" v, uh),
and the identification is made through the map:
a:Resg/p(GLy g X GLyg) — Sp, (91,92) — y(gflgg).

Let 0 € E,00° = 1. S,, has an open subset S?, consists of x such that  — o - id is invertible, it
descends to an open subset B? of B. Let 7 € FF with 7+ 7¢ = 0, let gA[;LT be the open subset of gA[:1
consisting of (A,v,u) such that A — 7 is invertible. We define the Cayley transform:

—~T 1+ T_IA
Co—:g[n —>SZXanFn7 (A,'U,U)'—><—O'1_T_1z4,'l),u>
Let (Sp x F™ x Fy, )reg be the open subset of the regular elements under this action of GL,,, it has open
subsets (S, x F" x F,,) (resp. (S, x F™ x F,,)_) consists of (z,v,u) such that (v,zv,---,2" )
forms a basis of E™ (resp. (u,ux,--- ,uz™ ') form a basis of E,), its preimage in G’ will be denoted
by G/ (resp. G_). For X € gl.", and e € {+ -}
X e g/ﬂ’, = ,(X) € (S x F, x F"),
Let H be the isometric class of n-dimensional non-degenerate £/ F-Hermitian space. For V € H,
we redefine
GV :=U(V)xU((V)xV,
let H” denote the diagonal subgroup of U(V) x U(V). The group H" x H" acts on the right on
GV by
(g,U) ) (hl, hZ) = (hl_lgh27h2_1v)7 g e U(V) X U(V),U eV
The GIT quotient GY /HY x HY can be identified with B. Let
Oy, ={(V,0) |V €H,0c G} isaHY(F) x H'(F) semisimple orbit}

8.2. Local theory. Now let F be a local field. For f € S(G'(F)), (z,v,u) € Sp(F) x F™ x F,, and
s € C, we put

(8.1)

z)(1, he),v,u)é(hy)|det by |*u(v=(z)ha3), n odd,

x)(1, he),v,u)é(hy)|det hy|?, n even.

Sty Jor ey £ Ry
Sty Jarnmy FOhT R
Fix v € G/(F), let b be the image of v in B(F'). Choose 0 € E,00° = 1 such that b € B7(F), let
u € CP(BI(F)), for s € C, define fs € S(gA[;L(F)) by

fo = (u- ) (co(X)).
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We define
L"Y(sa é) = chl(b) (37 ‘E)

and

¢ (x)(fzvgas)/ﬁ(’)/n’)g_;'l_l) n odd

I7(f,&,5) = ~ .
¢ (x)(f57§73) n even

Proposition 8.1. The definition of I°(f,&,s) is independent of the choice of u, and (1)-(5) of
Proposition 5.12 holds (where G',Hy, Ha are redefined as in this Subsection).

and we also have the following lemma
Lemma 8.2. Let n be a character on Ha(F) defined by n(hai,he2) = n(ha1)"in(ha2)™. Let

f € S(G'(F)), we have the following assertions:

o [f v is reqular semisimple, then

19(.6.5) / / - (i, ha))E(Rn) [ det huy () Ay d g,
Hy(F) JHy(F

where the integral converges absolutely for any s € C.
o Ifye G/ (F) (resp. G'_(F)), then the integral

/ / hl,hg)) (h1)|det hllsn(hz)dhldhz,
Hy(F) JHo(F

is absolutely convergent for s € H 1 (resp. s € Hoy 1) and equals I5(f,&,s) there.

<141

In particular, in these cases, the definition of Ify’(f,ﬁ, s) does not depend on the choice of o.

There is a notion of transfer between f € S(G/(F)) and (fV) € S(GY(F)) similar as the situation
in Subsection 7.2. For (vy,v,u) € G/(F), choose o such that a(y) € SZ(F), let X = ¢, (a(y),v,u).
Let b € B(F'), for O € O, We define

n+1 n(n—1)

Cy,0 1= Cx 1oy (@) 2 p(yr ) (20T TE (L = T e (1) T

\%4

where ¢ 1(O) denotes the semisimple orbit in 1" corresponding to O and v = (y1,72).

Proposition 8.3. Let f € S(G'(F)) and for each V € H let fV € S(GV(F)) such that f < (fV).

Then for any regular element v in G, (F), we have

I = > o).
(V,0)eO,
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8.3. Global theory. Let E/F be a quadratic extension of number fields. For f € S(G'(A)) and

T € ap, one defines a modified kernel K}F(hl, hg) as in | , Section 7].

Using the same strategy as the proof of the Theorem 3.1, one can prove the following proposition.
The corresponding results on the asymptotics of the modified kernel can be found in | , Section
7].

Proposition 8.4. Let & be a strictly unitary character of Aj,.

(1) For any f € S(G'(A)), s € C and T sufficiently positive, we have

(8:2) > / / |KT ., (ha, ho)||det hy|**)dhidhsy < oo.
~EB(F (Ha]

(2) For~ € B(F), as a function of T, the integral
(= [ I O e ldet s
Hy) J[H,

is an exponential polynomial. If s ¢ {—1,1}, then the pure polynomial term is constant,
denoted by 1,(f,&,s). For a fized f and &, I,(f,&,s) is meromorphic on C\ {—1,1}. We
denote L,(f, &) .= I,(f,&,0).

(3) For each v € B(F) and s ¢ {—1,1}, the distribution I,(-,§,s) is continuous on S(G'(A))

and we define
I(fagas) = Z I’Y(fagas)'
vEB(F)

Where the sum on the right-hand side is absolutely convergent.

Similar to the results in Section 4 and 6, when the test function is regular supported, the

distribution I, can be described in terms of normalized orbital integral.

Proposition 8.5. Let f € S(G'(A)). If there exists a place v of F such that f is of the form
fof?, with f, € S(G'(F)), f* € S(G'(AY)) and supp(fy) C GL(Fy) (resp. GL(Fy)), then (1)-(5)
of Theorem 4.2 holds.

Proposition 8.6. Let f = f,f" € S(G/'(A)) with f, € S(G'(Fy)), f¥ € S(G'(A?)) and supp(f,) C
Gloo(Fy), then for b € B(F), we have

reg

(8:3) L(f,&,9) Zf” R

Where I, is the distribution from relative trace formula in Proposition 8.4 (2), and I3 is definds as

in Section 6, the sum runs through all the representative of Hy(F)x Ha(F) orbits in Gy (F)NGyeg (F).
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APPENDIX A. ASYMPTOTIC OF MODIFIED KERNEL

In this appendix, we generalize the result of | , Theorem 3.3.7.1] to asymptotics of the
modified kernel associated with parabolic subgroups and their Levi subgroups and introduce a Lie
algebra analogue of it. We follow the strategy in | , Section 3].

For a reductive group G over F', and three semi-standard parabolic subgroups R C .S C @Q of G,

we denote 0’ @ the characteristic function of X € ag satisfying
(X) >0 forall « € AL,

(X) <0 forall a € AZ\ AE,

e w(H) >0 forall we ﬁg

® (v
® (v

Proposition A.1. Let Q € Frs. Then for every N > 0, there exists a continuous semi-norm || - ||
on S(G'(A)) such that

T n _
(A1) Y7 EZ (hhe) — FO (hom, Tg, ) Koo (has ha)| < e N”T”thHQN thHQf{V?HfH
XEX(Q)

holds for f € S(G'(A)), (h1, hs) € [Hi]gyu, X [Hz]éHQ and T € ap41 sufficiently positive.
We denote by 7}% G F the following space of function

Taer={re) € ] TUCLir,)or—pseS (e (Bn(F)\ GLy(4)) for any R C S C Q}

RCQ n+1
ReFRrs,F

Lemma A.2. For p = (pp) € T£

e (GL

n) and g € [GLy]¢, ~ define

ATp(g)= > 8 > AN (Hp,,,(v9) — Tp,,.) - Pe(19).
PIEC}—%S ’Yepn(F)\Qn( )

We also define
%7 p(g) = FO+1(g,T) - gp(9).

Then for any ¢ > 0, N > 0, there exists a continuous semi-norm | - || on T]%S #(GLy) such that

[497 ¢~ 1T\ < el

Proof. Using the partition formula in | , Lemme 2.1], for every g € [GLy]p,, we have
Z Z FRTH—I((Sg: TRn+1)TRnii( P41 (59) - TPn+1) = 17
ReFRs,F 0€ERn(F)\Pn(F)
RCP

together with the equation

7/:Qn+1 Pn+1 _ Z o Snt1,Qn+1
P’n,+1 n+1 - Rn+1 '
SG.FRS F
PCSCQ
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For R C S and R, S € Frs,F, define

rselg) = > €p-pelg),

PcFrs,F
RCPCS
then we obtain
STL b n
AQ7T£(9) = Z Z FRn-H (797 TRn+1 )UR,;II Qet1 (HRn+1 (79) - TRn+1 )RS‘P(’YQ)'
R7S€fgs,p YERL (F)\Qn(F)
RC

Note that USZE’Q"“ 1 and o "L“Q"“ 0 for R C @, it follows that

AQTp(g) —T%Tp(g) =" N FRe(8g, oy (Hp,,, (19) — Thoy) - Rse(19)-
RCS e Ry (F)\Qu (F)

Since Eg: D f e (9 Xer,ponr) f(79)) sends SO([GLn]}Zn) to 80([GLn]én), it remains to

show that for every ¢ > 0 and N > 0, there exists a continuous semi-norm || - || on TP?S 7(GL,) such
that
(A2) Irs(9)l < Mgz Y el

for all ¢ € T4 p(GLy), T sufficiently positive and g € Ry (F)\Gp(A)Y with

FR7L+1 (97 T) n+1,Qn+1 (‘HRn+1 (g) - TRn+1) # 0

n+1

We can assume P is standard. Take such g and take z € AHl’OO such that ¢g can written as zg'

where g* € Gny1(A)g, there exists r > 0 such that [|g||r, < Hg 1%, By , Lemma 4.29]
applied to G = Mg, ,,, there exists r > 0 such that
T T
(A3) eIl <« min dRyialg’) | ~ min ARy i1,0(9)
aEA§n+1\A§n+1 aEA 71+1\A§n+1
rro

A4 lgle, <llg'lg,, < | max  draale))

acAS"TI\A,

Fix a € Ag”“ \Aé%"“, for any P € Frsr with a € Aéj"“, there is unique P® € Frg p such that
P(X
AT = AOP”“ \ {a}. Then there exists Ny > 0 such that for any r > 0, we can find a continuous

semi-norm || - || on TR% #(GLy) with
@< Y Ipe(9) = prep(@)l < llgllFe Y droiale) Nl
RCPCS RCPCS
aeA(l)”nJrl aEA(I)D”H

The equation (A.3) implies dp,,, o« ~ dR, ,, hence by (A.4), as « varies through A(?”“ \
AP"“ (A.2) is proved. O

Now we prove Proposition A.1.
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Proof. Given ¢ € TO([H27n+1]QH2 o) and x € X(G"), consider the following sequence of maps

R(fY),v@id A Q

7-0([1_11]QP11) ® ﬂ([HQ’”+1]QH2,n+1) — T]:Rs F(GI) ® 7-0([H27"+1]QH2,n+1) RL)@)id T]—'Rs F(H2)
AQT
S TR () 8((Halgy )
neT

Where the first map sends ¢ ® ¢ to P +— Ryv( fV)cple ® 1, the second map is restriction to
H, C G, the third map sends (py) ® ¥ to P — <p(p,¢}pH2,n+l>, the last map is the truncation
operator defined in Lemma A.2. By [ , Proposition 3.4.2.1] and Lemma A.2, the images of
these maps land in the target, and by the closed graph theorem, they are continuous. Denote L?;
the composition of the first three maps and A9 at the last, and P]%(T the composition of first

three maps and 197 at the last. One check directly that

L (p @) (ha,n) = / K £ (b b)) (ha)d (ha,nin).
(Hilay, x [H27”+1]QH2,n+1
and
PRI (@) (hom) = FO+t (hyn, Tg,.,,) / K1.qux (b1, han, honi1)e(h)d(hont1).
[Hl}QHl X[H2vn+1]QH2yn+1
By | , Theorem 2.9.4.1.3] and Lemma A.2, for every p®1) € TO([Hl]QHI )®7ﬂ([H2,n+1]QH2 n+1)

and N > 0, we have

T T _
HL?,X (pov)— PPl (p® w>H g ¢ NI

XE€X(G) ol
By the uniformly boundedness principle, for each ¢ ® 1) € T]\O,([Hl]QHl) ® T]S([H2:n+1}QH2 n+1), we
have

> |t wew - P ew)| <y e el nlwl-x

XEX(G) oo, N

Apply this to ¢ = dp,,% = Op,,,,, Proposition A.1 is proved except the semi-norm on f. One then
deduces it by applying the uniform boundedness principle again. O

There is also an analogous result on the geometric side

Proposition A.3. There exists a continuous semi-norm || - | on S(G'(A)) such that for any
f€S(G'(A)) and N > 0, we have

> K Z (b1, hy) = FO+t (hom, T, ) Krqq(ha, ha)| < e NIIT“thHQN Hh2||QHN2Hf\|.
YEB(F)
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Proof. Denote AN the N-dimensional affine space over F. Choose any closed embedding i : B <
AN for some N. We extend the function K t~ forall v € AN by setting K t~ = 0if v is not in the
image of 1.

Fix f, there exists d € F such that K7, = 0 unless v € dO¥. Choose u € C®°(FZX) support
around 0 such that supp uNdOY = {0}. Let p be the composition G’ — B < AY. For v € (dOr)",

define fy(g) = f(9) - u(p(gos) —). Then by | , Proposition 4.30], we have f, € S(G'(A)) and
for any continuous semi-norm || - ||s on S(G/(A)), the sum
> lfls
YEB(F)

is finite, hence defines a continuous semi-norm on S(G’(A)) by uniform boundedness principle. One
check directly that Kf%p(hl, hg) = Kf’pﬁ(hl, hg) for any P € Fgrs and (hl, hg) € [Hl]le X [HQ]PHQ,
hence KT (hy,ho) = K1 (hy, ho).

Proposition A.1 implies there exists a semi-norm || - ||s on S(G/(A) such that
’T n -
[KPT (b, ho) = O (hon, T, 1) K pg(ha, ho)| < e MR NG Nhallg 1£1ls:

Therefore

T _
> !KQ (h1, ha)=F 9+ (hon, T, ) K on(hiha) < | D (f4lls | e N||T”Hh1HQH Hh2||QH :
YEB(F YEB(F)

O

We state the asymptotic of the modified kernel on the Levi subgroup, the proof is similar so we
omit the proof.
Let Q € Frg with Levi decomposition P = M N. Let f € S(M(A)). For x € X(M) and T € ay,

we put

M,T ~Qn
KT (hho) = > €3 > PR (Hp,y (Onha.n) = Tryy ) K by (YR, 6h2).
Plngs VE€Py (F)\Mu, (F)
5€PJMH2 (F)\MH2(F)

where (h1, hg) € [Mp,] x [Mpu,].

Proposition A.4. For every N > 0, there exists a continuous semi-norm || - || on S(M(A)) such
that

M,T _ _ _
(A5) 3 KM (o) = FO1 (ho, Ta ) K (o, )| < eI g [0 1132 (1511
XEX(M)

holds for f € S(M(A)), (h1, he) € [Myu,] X [Mu,]* and T € an41 sufficiently positive.

On the Lie algebra, we have similar result
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Proposition A.5. Let g denote either gl or gfil Let Q) € Fgrs,F, then for every N > 0, there

exists a continuous semi-norm || - | on S(g(A)) such that
> IKEI ()~ FO (0. Ta. ) Kea(@)] < e MM g el
a€(g/ GLn)(F)

for all ¢ € S(g(A)), g € [GLn]]é?n and T € a,4+1 sufficiently positive.

Proof. By the same argument as in the proof of Proposition A.3, we only need to prove that there

exists a continuous semi-norm || - || on S(g(A)) such that
[KET(9) = FO1 (9. T, 1) Kp.a(9)l < e T g =l

holds for all ¢ € S(g(A)) and g € [GLy]g,
By Lemma A.2, we are then reduced to check that the family P — K, p belongs to T]%&F(GLH).
We first show this for g = gl,, ;. Let R, S € Frsr with R C S C Q. For P € Frgs, we will write
mp and np the the Lie algebra of Mp, , and Np, ,, respectively. We need to show there exists
N > 0 such that for any » > 0 and X € U(gl,,), we have

[R(X)Kp,r(9) — R(X)Kp,s(9)| < di(9)"llgll™.

Replacing ¢ by X - ¢, we can assume X = 1. For any P € Frs, we can extend the definition of

K, p toany g € [GLy41]p,,, by the same formula as in (3.10). After this extension, we can write

Ky,5(9) = Kor(9) = Kp1(9) + Ko, (9),

where
Korlg)= Y (/ o((M + N) - g)AN — / (M +N). )dN)
Memg(S) ns(A)
and
Koo(g) = / (M + N) - g)dN.
Memg(F \mR(F ns (A
We have
Kpa(g) = —Kp,5(9) + (Kp,5)Rpsa (9);
here —pg, ., is the constant term operator. By | , Proposition 2.5.14.1], there exists N > 0

such that for any r > 0, we have

(A.6) [Ko1(9)] <o d7 () " Nlgl™Y

holds for any g € Ry+1(F)\ GLy+1(A). Thus it remains to show that there exists N > 0 such that
for any r > 0 and g € Ry41(F)\ GLy+1(A) we have

(A7) Ko a(9)] <o di () " |gl™.

After replacing R, 41 by its conjugation, we can assume R, is standard. We then can assume g
is in the Siegel set sf+1 of R, .1, where we recall that any g € s®+1 can be written as ac, where

a € A}, such that (o, a) >t for any a € Agﬁ "1 and some t > 0, and ¢ lies in some compact subset
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C. We now proceed to show that there exists N > 0 such that for any » > 0 and Ny > 0, there

exists a continuous semi-norm || - || on S(gl,,;(A)) such that
— Sn -T
(A.8) > (M +Y)-g) < Y7 Mgl¥dg ()" llel
Memg(F)\mg(F)

holds for any g € sf™+1 Y € ng(A). Note that (A.8) would imply (A.7). To show (A.8), after
replacing || - || by sup.c¢ || R(c) - ||, we can assume g = a € A3 | with a € A7° | such that (o, a) >t
for any « € AOR”“. Regarding elements of gl,,(A) as (n+ 1) x (n + 1) matrices, the action of a

preserve each entries. Therefore (A.8) directly follows from the following two facts:

e For any N sufficiently large, we have

> llazl| ™ < flaf™

el
holds for all a € A*.
e Fix t > 0, for any r > 0 there exists N > 0 such that

Y laz| ™ < fal™"

zeF\{0}
holds for all @ € Ry C A*.

We thus finish the proof when g = gl,,, ;. For the case g = g/EZ, choose a non-negative ¢’ € S(A)
with ¢'(0) > 0. Given ¢ € S(gl,,(A)), put 1 € S(gl,1(A)) by

o1 (;j d) = o(A,v,u)¢/ (d).

Then there exists a constant C' > 0 such that K, p(g) = CK, p(g). Therefore, the result follows

from the case for g = gl 4. u
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