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0.1 Local Langlands for GL(n)

References are [?, ?, ?, ?, ?].

Notation(0.1.0.1).
• Let p 6= ℓ ∈ Prime.
• Let K ∈ p-NField.
• Let ψ 6= 1 ∈ K∨.
• Let (Kr,Or, ϖK , κr)/K be an unramified extension of degree r.

⌟

1 Local Langlands for p-adic GL(n)

Thm.(0.1.1.1) [LLC for GL(n), Hasse(30)/Tunnell(78)/Kutzko(80)/Harris-Taylor[?]/ Hen-
niart(84, 86, 88, 93, 00)[?]]. There exists a unique collection of bijections {recn}n∈Z+ between
sets:

recn : Irradm(GL(n;K))
∼=−→ wdnφ-ss(WK)

satisfying the following properties:
1. For a quasi-character χ of K×, rec1(χ) = χ ◦Art−1

K ??.
2. For a quasi-character χ of K× and π ∈ Irradm(GL(n;K)),

recn(π(χ)) = recn(π)⊗ rec1(χ).

3. For any π ∈ Irradm(GL(n;K)) with central character ω,

det(recn(π)) = rec1(ω).

4. For any π ∈ Irradm(GL(n;K)), recn(π∨) = recn(π)∗.
5. For any two π1 ∈ Irradm(GL(n1;K)), π2 ∈ Irradm(GL(n2;K)),

L(π1 × π2; s) = L(recn1(π1)⊗ recn2(π2); s), ϵ(π1 × π2, ψ; s) = ϵ(recn1(π1)⊗ recn2(π2); s)????.

⌟
Prop.(0.1.1.2) [Reduction to Supercuspidal Representations, Bernstein-Zelevinski[?]]. By

Bernstein-Zelevinsky classification??, it suffices to construct recn for irreducible cuspidal representa-
tions, then for any π = Q(∆1, . . . ,∆r) ∈ Irradm(GL(n;K)), where ∆i = ∆i(πi,mi), we can define

recn(π) =
r⊕
i=1

recni(πi)⊗ Sp(mi) ∈ wdnφ-ss(WK)??.

⌟
Proof: Check this satisfies the properties 1-5.? □

Cor.(0.1.1.3). If π ∈ Irradm(GL(n;K)) and recn(π) = (ρ0, V,N), then ρ0 only depends on the super-
cuspidal support of π??. ⌟
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Thm.(0.1.1.4)[Uniqueness of the Correspondence, Henniart[?]]. For n ∈ Z≥2, suppose π, π′ ∈
Irrcusp(GL(n;K)) s.t. for any r ∈ [n− 1]+ and τ ∈ Irrcusp(GL(r;K)), we have

ϵ(π × τ, ψ; s) = ϵ(π′ × τ, ψ; s)

then π ∼= π′. ⌟
Proof: Cf.[?]. □

Thm.(0.1.1.5) [Injectivity of the Correspondence]. Any set of maps recn : Irrcusp(GL(n;K)) →
wdnφ-ss(WK) satisfying the properties listed in(0.1.1.1) must be injective. ⌟
Proof: By the definition of Rankin-Selberg L-factors?? and??,

rec(π) = rec(π′) ⇐⇒ ords=0 L(rec(π)∨ ⊗ rec(π′); s) < 0 ⇐⇒ L(π∨ × π′; s) < 0 ⇐⇒ π = π′.

□

Thm.(0.1.1.6)[Surjectivity, Numerical Local Langlands Correspondence, Henniart[?]]. For
any n ∈ Z+, d ∈ N and quasi-character χ of K×, the subset of Irradm,cusp(GL(n;K)) of repre-
sentations with conductor d and central character ω is finite, and the subset of Irrnφ-ss(WDK) of
representations with conductor d and determinant ω is finite. Moreover, this two sets have the same
cardinality.

In particular, any map recn : Irrcusp(GL(n;K)) → Irrnφ-ss(WDK) satisfying properties listed
in(0.1.1.1) must be surjective. ⌟
Proof: □

2 Proof
The proof reduces to constructing all the Galois representations corresponding to supercuspidal

representations. The method of construction of σ(π) for supercuspidal π is to globalize and construct
the local representations from global representations coming from cohomology of Shimura varieties.
The difficulty lies in showing that all the globalization gives the same representation, and satisfies
the functional equations.

The strategy is as follows:
• Choose a CM field F an w ∈ Σfin

F s.t. Fw ∼= K.
• Look at the cohomology of projective (n− 1)-dimensional PEL-type Shimura pro-variety X =

lim←−m∈Z+
Xm associated to the reductive group G/Q s.t.

G⊗Qp
∼= Q×

p ×GL(n;K)×GDp

• For each ξ ∈ Irrfd
Q(G), we can associate a lisse Qℓ-sheaf Lξ on X. The cohomologies

H i(X,Lξ) = lim−→
U∈G(AF,f )

Hi
ét((XU )F , Lξ)

are infinite-dimensional Qℓ-representations ofG(AF,f )×GalF . We can choose ξ s.t. H i(X,Lξ) =
0 for i 6= n− 1.
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• There is a map

Rξ : Irradm(G(Af ))→ Repfd(WK) : Π 7→ HomG(AF,f )(Π,Hn−1(X,Lξ)).

• The decomposition G(Af ) = Q×
p × GL(n;K)×(other terms) gives a decomposition Π = Π0 ⊗

Πw ⊗ Πw. For any π ∈ Irrcusp(GL(n;K)), we can find such a Π s.t. Πw is an unramified twist
of Π, Π0 is unramified and Rξ(Π) 6= 0.

• Choose an integral model X̃m of Xm ⊗ Fw and consider the completions RK,n,m of the local
rings of a certain stratum of the special fibre of X̃m, which is the deformation space of the
unique 1-dimensional ϖK-divisible formal OK-module ΣK,n,m of OK-height n with Drinfeld
level-m structure over κ. These spaces have canonical vanishing cycle sheaves ψin,m and the
limits of their cohomologies ψin are endowed with an admissible action of the subgroup AK,n ⊂
GL(n;K)×D×

K,1/n ×WK consisting of elements (γ, δ, σ) s.t.

| det γ|−1.|Nmrd(δ)|.|Art−1
K σ| = 1

• (Harris-Taylor Construction Theorem B)Local Jacquet-Langlands theory associates to each
π ∈ Irrcusp(GL(n;K)) a ρ = J-L(π∨) ∈ Irradm(D∗

K,1/n). Then there exists rℓ(π) ∈ Repn
Qℓ

(WK)
s.t.

[π ⊗ rℓ(π)]ss =
n−1∑
i=0

(−1)n−1−i[HomD∗
K,1/n

(J-L(π∨),Ψi
n)]ss.

and
n[Rξ(Π)⊗ χ(Π0 ◦NmK/Qp

)]ss ∈ Z[r(π)]ss.

• To show the last assertion, one gives a description ofHn−1(X,Lξ)Z
×
p in which [HomD∗

K,1/n
(J-L(π∨),Ψi

n)]
occurs(Theorem D).

• Define recn(π) = rℓ(π∨(1−n
2 )).

Scholze’s Proof

Slogan: the local Langlands correspondence for GL(n;K) is realized in the cohomology of the
moduli space of 1-dimensional p-divisible groups of height n.

Thm.(0.1.2.1)[Test Function Characterization of Local Langlands, Scholze[?]].
(a) For each n ∈ Z+, there is a unique map

σn : Irradm(GL(n;K))→ wdnψ-ss(WK)

s.t. for any τ ∈WK and any “cut-off” function h ∈ C∞
c (GL(n;K)),

tr(fτ,h|π) = tr(τ |σn(π)) tr(h|π)(0.1.4.4),

Write rec′(π) = σn(π)(1−n
2 ).

(b) If π ∈ Irradm(GL(n;K)) is a constituent of π1× . . .×πr, then rec′(π) = rec′(π1)⊕ . . .⊕ rec′(πr).
(c) rec′ induces a bijection between Irrcusp(GL(n;K)) and Irrnφ-ss(WK).
(d) rec′ is compatible with twists, central characters, duals, and L- and ϵ-factors of pairs, hence

rec′ = rec as in(0.1.1.1).
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⌟
Proof: (a) and (b) follow from(0.1.2.2) and(0.1.2.4).

(c) uses computation of IK-invariant nearby cycles for simple Shimura varieties. This computation
leads to a direct proof of the bijective correspondence for supercuspidal representations, without using
the numerical local Langlands correspondence.

Finally, for the proof of (d): By Brauer induction and linearity, it suffices to assume that
π is induced from characters. It suffices to show that: For any π1 ∈ Irradm(GL(n1;K)), π2 ∈
Irradm(GL(n2;K)), there exists F ∈ NField with w ∈ Σfin

F s.t. K ∼= Fw, and two potentially
Abelian πi ∈ Irrauto(GL(ni)/F ), π2 ∈ Irrauto(GL(n2)/F ) s.t. (Πi)w is an unramified twist of πi. Cf.
proof of[?]VII.2.10?.

Then the compatibility follows from Henniart’s method of twisting with highly ramified characters,
cf. Corollary 2.4 of [?].? □

Prop.(0.1.2.2)[Dévissage for Constructing Galois Representations]. For n ∈ Z+, suppose (a)
and (b) of(0.1.2.1) hold for all n′ < n and the following hold:

1. If π = π1 × . . .× πr ∈ Repadm(GL(n;K)) where πi ∈ Irradm(GL(ni;K)), then

tr(fτ,h|π) = tr

τ ∣∣∣ ⊕
1≤i≤r

σ(πi)(
n− ni

2
)

 tr(h|π).

2. For π ∈ Irradm(GL(n;K)) that is either essentially square-integrable or a generalized Speh
representation, then there exists a virtual finite dimensional representation σ(π) of WK with
Q+ coefficients of dimension n s.t.

tr(fτ,h|π) = tr(τ |σ(π)) tr(h|π).

3. If π ∈ Irrcusp(GL(n;K)), then σ(π) is a genuine representation of WK .
Then (a) and (b) of(0.1.2.1) hold true for n, by defining σ(π) as follows: If π has supercuspidal
support {π1, . . . , πr}(with multiplicity), then we define

σn(π) =
⊕

σ(πi)(
1− ni

2
).

⌟
Proof: □

Lemma(0.1.2.3)[Testing on Tempered Representations and Generalized Speh Representa-
tions].

• Let d ∈ Z+, t ∈ Z≥2, n = dt, π0 ∈ Irrcusp,uni(GL(d;K)) and π = St(π0, t). Then there exists
h ∈ C∞

c (GL(n;OK)) s.t. tr(h|π) = 0 for any π ∈ Irradm(GL(n;F )) that is tempered but not of
the form π = π0(iy1)× . . .× π0(iyt) where yi ∈ R. And for these π, tr(h|π) 6= 0.

• If h ∈ C∞
c (GL(n;K)) s.t. for all π ∈ Irradm(GL(d;K)) that is tempered but non-square-

integrable or π = St(π0, t) for some d ∈ Z+, t ∈ Z≥2, n = dt, π0 ∈ Irrcusp,uni(GL(d;K)); then
tr(h|π) = 0 for any π ∈ Irradm(GL(n;K)).

⌟
Proof: Kazhdan’s density theorem? and □
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Prop.(0.1.2.4)[Constructing Galois Representations]. The hypotheses of(0.1.2.2) are true for any
n ∈ Z+. In particular, (a) and (b) of(0.1.2.1) hold true for any n ∈ Z+. ⌟
Proof: 1 is proved in Theorem 6.4. of [?], by relating the deformation spaces of one-dimensional
p-divisible groups to the deformation spaces of their infinitesimal parts.

2. Firstly by(0.1.5.4), K can be realized as K = Fw with notation as in(0.1.5.1) and(0.1.5.3).
Then we can apply(0.1.7.5) to π∨ to get πf ∈ Irradm(G(Af )) s.t.

• H∗
ξ (πf ) 6= 0(0.1.5.6).

• πp,0 is unramified.
• πw = π ⊗ χ for some unramified quasi-character χ of K×.

Then we apply(0.1.7.2) to get

tr(f∨
τ,h|π∨ ⊗ χ) = 1

a(πf )
tr

(
τ |[Hξ[πf ]]⊗ χπp,0

)
tr

(
h∨|π∨ ⊗ χ

)
.

Then we can take σ(π) = 1
a(πf ) [Hξ[πf ]]∨ ⊗ χ−1

πp,0 ⊗ χ
−1?, which has dimension n by(0.1.6.1).

3: It suffices to show that σ(π) ∈ K0(Repfd(WK)). For this, Cf.[?]P705?. □

Bijective Correspondence for Supercuspidal Representations

Thm.(0.1.2.5)[Supercuspidal Representations are Realized on Lubin-Tate Spaces]. Let [Rψn]
be the alternating sum of the global section of the vanishing cycles for the Lubin-Tate tower, then
it’s endowed with an admissible action of the subgroup AK,n ⊂ GL(n;K)×D×

K,1/n ×WK consisting
of elements (γ, δ, σ) s.t.

|det γ|−1.|Nmrd(δ)|.|Art−1
K σ| = 1

.
Let ρ ∈ Irradm(D∗

K,1/n) s.t. π = J-L(ρ) ∈ Irrcusp(GL(n;K)). Then

[Rψ](ρ) = (−1)n−1π∨|GL(n;OK) ⊗ σ(π) ∈ K0
(
Rep(adm,cont)(GL(n;OK)×WK)

)
(0.1.2.2)?.

⌟
Proof: Cf.[?]P704.?

This follows from(0.1.4.7).? Cf.[?]P704. □

Thm.(0.1.2.6)[Characterizing the Supercuspidal Correspondence]. Suppose for eachK ∈ p-NField
and n ∈ Z+, there is a map

rec′
n : Irradm(GL(n;K))→ Repn(WK)

s.t.
• For a quasi-character χ of K×, rec′

1(χ) = χ ◦Art−1
K ??.

• If π ∈ Irradm(GL(n;K)) is a constituent of π1 × . . . πt, then σ(π) = σ(π1)⊕ . . .⊕ σ(πt).
• For a quasi-character χ of K× and π ∈ Irradm(GL(n;K)),

rec′
n(π(χ)) = rec′

n(π)⊗ rec′
1(χ).
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• If K ′/K is a cyclic Galois extension of prime degree and π ∈ Irrcusp(GL(n;K)) with Π =
BCF ′

F (π) ∈ Irradm(GL(n;K ′)), then rec′(Π) = rec′(π)|WK′ .

• If π ∈ Irradm(GL(n;K)) and rec′(π) is unramified, then π is Iwahori-spherical.
Then

rec′
n : Irrcusp(GL(n;K))→ Repn(WK)

is a bijection. ⌟
Proof: ? □

Prop.(0.1.2.7). The correspondences defined in(0.1.2.1) satisfies the conditions in(0.1.2.6). In particu-
lar, it induces a bijection

rec′
n : Irrcusp(GL(n;K)) ∼= Repn(WK)

⌟
Proof: ? □

3 p-divisible Groups and Vanishing Cycles

Def.(0.1.3.1)[p-divisible Groups]. Let S ∈ Sch /OK s.t. p is locally nilpotently?, then a ϖ-divisible
OK-module H over S is a p-divisible group G ∈ pDiv(S) together with ι : OK → EndS(H) s.t. the
two induced actions of OK on LieS(G) are equal.

For any ϖ-divisible OK-module G/S, we have [K : Qp]|ht(G)?. So we can define the OK-height
htOK

(G) = ht(G)/[K : Qp]. ⌟
Def.(0.1.3.2)[Drinfeld-level-m-Structures]. A Drinfeld-level-m-structure on a 1-dimensional ϖ-

divisible OK-module H/S is a tuple of sections (X1, . . . , Xn) ∈ H[ϖm] s.t.∑
i1,...,in∈OK/(ϖm)

[i1X1 + . . .+ inXn] = [H[ϖm]]

as relative Cartier divisors over S. ⌟

D-Groups

Def.(0.1.3.3) [Local Simple Unitary Groups]. For D′/Qp is a semisimple algebra with maximal
order OD′ , define D = Mat(n;K)×D′ with maximal order OD = Mat(n;OK)×OD′ .

Define GD′ = ResOK/Zp
(O∗

D) and GD = ResOK/Zp
GL(n)×GD′ . ⌟

Def.(0.1.3.4)[D-Groups]. Let S ∈ Sch s.t. p is locally nilpotently, then a D′-group over S is an étale
p-divisible group H over S together with an action

ι : Oop
D′ → End(H)

s.t. H[p] is free of rank 1 over Oop
D′/(p). ⌟

Def.(0.1.3.5)[(OK , D′)-Groups]. For S ∈ Sch /OK , an (OK , D′)-group over S is a p-divisible group
H/S with an action

ι : Oop
D → End(H)
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s.t. H decomposes as a product H = H⊕n × H ′ under the action of Oop
D
∼= Mat(n;OK)op × Oop

D′

where H is a 1-dimensional ϖ-divisible OK-module of height n and H ′ is a D′-group(0.1.3.4).
And a level-m-structure on a (OK , D′)-group H is a Drinfeld-level-m-structure on H and an

isomorphism of Oop
D′-modules Oop

D′/(pm) ∼= H ′[pm]?. ⌟
Prop.(0.1.3.6)[Dieudonné Parameters]. An (OK , D′)-group H over κr is equivalent to a Dieudonné

module M over W (κr) s.t. there is an isomorphism of OD ⊗W (κr)-moduele

M ∼= OD ⊗W (κr).

Thus M is represented by an element δ0 ∈ GD(W (κr)[1
p ]) up to σK-conjugacy. This δ0 is called the

Dieudonné paramter of H. ⌟

Deformations of p-adic Spaces

Def.(0.1.3.7)[Hβ]. Take r ∈ Z+ and a 1-dimensional ϖ-divisible OK-module Hβ of height n over κr,
whose Dieudonné module is given by an element

β ∈ GL(n;OKr ) diag(ϖK , 1, . . . , 1) GL(n;OKr )

up to σK-conjugacy. ⌟
Def.(0.1.3.8)[Deformation Spaces]. Let Spf Rβ be the formal deformation space of Hβ as ϖ-divisible
OK-modules over OKr , with universal deformation Hβ.?

For m ∈ Z+, let Rβ,m be the covering of Rβ parametrizing Drinfeld-level-m-structures on Hβ. ⌟
Prop.(0.1.3.9).

• Rβ ∼= OKr [[T1, . . . , Tn−1]].
• Rβ,m/Rβ is a finite Galois covering with Galois group GL(OK/(ϖm)), étale in the generic fiber.
• Rβ,m is regular.

⌟
Proof: Cf.[?]P672. □

Def.(0.1.3.10)[Deformation Spaces]. For a (OK , D′)-group H over κr, there is a deformation space
Spf RH of deformations of H over OKr with universal deformation H, and a covering map RH,m/RH
parametrizing level-m-structures on the universal deformation. ⌟

Prop.(0.1.3.11)[Comparison of Deformation Spaces]. If H ∼= H
⊕n
β ⊗H

′, then
• The canonical map Spf RH → Spf Rβ is an isomorphism.

• The canonical map Spf RH,m → Spf Rβ,m×Spf Rβ
(H ′[pm])∗ is an isomorphism, where (H ′[pm])∗

is the set of Oop
D -generators of H ′[pm]. In particular, Spf RH,m/ Spf RH is a finite Galois cover

with Galois group GL(n;OK/(ϖm))× (OD′/(pm))∗.
⌟

Proof: This follows from the fact there are no deformations of a D′-group, by rigidity of étale
covers.? □
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Def.(0.1.3.12)[Lubin-Tate Tower]. For β basic, the tower

(Spf Rn,m)m∈Z+ =
(
Spf Rβ,m ⊗Or ŎK

)
m∈Z+

is called the Lubin-Tate tower of height n. This doesn’t depend on β, because there exists a unique
1-dimensional formal OK-module of height n over κ and a unique Drinfeld-level-m-structure for any
m. ⌟

Prop.(0.1.3.13). There is a compatible action of AK,n ⊂ GL(n;K)×D×
K,1/n×WK consisting of elements

(γ, δ, σ) s.t.
|det γ|−1.|Nmrd(δ)|.|Art−1

K σ| = 1

on the Lubin-Tate tower, where
• GL(n;K) acts on the Drinfeld-level-structures,
• D×

K,1/n acts on the trivialization of the special fiber.
• WK acts as Frobenius.

⌟

Vanishing Cycles

Def.(0.1.3.14) [Vanishing Cycles]. For X ∈ Schft /OK̆ with generic fiber X/K̆, the formalism of
vanishing cycles is used to relate the cohomology of X and the cohomology of XKs together the
action of IK .

Consider the diagram X X XKs

i j and Λ ∈ Abfin, then the sheaf of vanishing cycle
of X/OK̆ is defined to be

Ψ•
X (Λ) = i∗R•j∗Λ ∈ Sh(X ét),

which has an action of IK . ⌟
Prop.(0.1.3.15)[Proper case]. If X/OK̆ is proper, then proper base change implies i∗ : Hp

ét(X , Rqj∗Λ) ∼=
Hp

ét(X, i∗Rj∗Λ). And the spectral sequence for j implies

Hp
ét(X,Ψ

n(Λ)) =⇒ Hp+q
ét (XKs ,Λ).

which is IK-invariant. If moreover, X/OK is smooth, then by??, this spectral sequence degenerate

at page 2 and Ψn(Λ) =
{

Λ , n = 0
0 , n ≥ 2

, inducing an isomorphism

Hn
ét(X,Λ) =⇒ Hn

ét(XKs ,Λ).

where IK acts trivially. ⌟
Def.(0.1.3.16)[Formal Vanishing Cycles]. The vanishing cycle is defined verbatim in the Berkovich

formal schemes setting, and the resulting sheaves are called formal vanishing cycles. But Scholze
didn’t pass to the maximal unramified extension(the Lubin-Tate tower) as Harris-Taylor did, and we
can get more informations. ⌟
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Thm.(0.1.3.17) [Formal Vanishing Cycles on the Deformation Tower]. Consider the formal
vanishing cycles on the tower {Spf Rβ,m}m∈Z+ :

Ψi
β = lim−→

m∈Z+

H0(Spf Rβ,m,Ψi
Spf Rβ,m

Qℓ).

Then
H0(Spf Rβ,m, RiψSpf Rβ,m

Qℓ) ∈ Repfd (WKr ×GL(n;OK/(ϖm))) ,

and it vanishes unless i ∈ [0, n− 1].
In particular Ψi

β, [Ψβ] ∈ Rep(cont,adm)(WKr ×GL(n;OK)). ⌟
Proof: Cf.[?]P673. □

Prop.(0.1.3.18) [Isomorphism of Formal Vanishing Cycles]. Define the formal vanishing cycles
as

Ψi
H

= lim−→
m∈Z+

H0(RH ,Ψ
i
Spf R

H,m
Qℓ),

then they has an action of WKr ×GD(Zp). And by(0.1.3.11), there is a WKr ×GD(Zp)-equivariant
isomorphism

Ψi
H
∼= Ψi

β ⊗ C∞
c (O∗

D′ ;Qℓ).

⌟
Proof:

□

Def.(0.1.3.19)[Vanishing Cycles on the Lubin-Tate Tower]. Define the vanishing cycles as

Ψn = lim−→
m∈Z+

H0(Spf Rn,m,Ψi
Spf Rm

Qℓ),

with an action of AK,n induced by(0.1.3.13). Then Ψn ∈ Rep(adm,alg,cont)(GL(n;OK)×O∗
DK,1/n

×IK),
and it vanishes unless i ∈ [0, n− 1]. ⌟
Proof: The smoothness of O∗

DK,1/n
-action follows from comparison theorem Corollary 4.5 of [Van-

ishing cycles for formal schemes. 2, Berkovich], Cf. proof of [?], Lemma II.2.8. The rest follows
from(0.1.3.17). □

4 Cyclic Base Change

Prop.(0.1.4.1).Kr/K be the unramified extension of degree r, then for any x ∈ GL(n;Kr), we can
define Nx = x.xσ. . . . .xσ

l−1 .
Then N defines an injection from the σ-conjugacy classes of GL(n;Kr) to the conjugacy classes

of GL(n;K). In fact, if γ = Nx, then Gx,δ is an inner form of Gγ . ⌟
Proof: Cf.[Arthur-Clozel]P3. □
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Prop.(0.1.4.2)[Cyclic Base Change]. If γ = Nx, we can define orbital integrals and twisted orbital
integrals:

TOrbδ(φ) =
∫
Gδ,σ\ GL(n;Kr)

φ(g−1δgσ)dgr
dt ,

Orbγ(f) =
∫
Gγ\ GL(n;K)

φ(g−1δg)dg
dt .

Then for any φ ∈ C∞
c (GL(n;Kr)), there exists f ∈ C∞

c (GL(n;K)) s.t. for any regular γ ∈ GL(n;F ),

Orbγ(f) =
{

TOrbγ,σ(φ) , γ = Nδ, δ ∈ GL(n;Kr)
0 , otherwise

.

⌟
Proof: Cf.[Arthur-Clozel]P20. □

Test Functions

Def.(0.1.4.3)[Test Functions]. For any τ ∈WKr and h ∈ C∞
c (GL(n;OK);Q), define

ψτ,h(β) =
{

tr(τ × h∨|[Ψβ]) , β ∈ GL(n;OKr ) diag(ϖK , 1, . . . , 1) GL(n;OKr )
0 , otherwise

.

Then φτ,h ∈ C∞
c (GL(n;Kr);Q), and is independent of ℓ. ⌟

Proof: Cf.[?]P674?. □

Def.(0.1.4.4)[Base Change Test Function, fτ,h]. Define fτ,h ∈ C∞
c (GL(n;K);Q) s.t. it has match-

ing twisted orbital integral with φτ,h ∈ C∞
c (GL(n;Kr);Q)? w.r.t. the Haar measures that give the

hyperspecial subgroups volume 1. ⌟
Def.(0.1.4.5). For any τ ∈WKr and h ∈ C∞

c (GL(n;OK);Q), h′ ∈ C∞
c (O∗

D;Q), define the function

φτ,h,h′(δ0) = tr
(
τ × h∨ × h′ | [ΨH ]

)
(0.1.3.18).

if H has Dieudonné paramter δ0(0.1.3.6), and 0 if there is not such H. Then by(0.1.4.3), φτ,h,h′ ∈
C∞
c (GD(W (κr)[1

p ])) and is independent of ℓ. ⌟
Prop.(0.1.4.6)[Base Change Test Functions].φτ,h,h′ ∈ C∞

c (GD(Qpr );Q) corresponds to f∨
τ,h×h′ ∈

C∞
c (GD(Qp);Q). ⌟

Proof: Cf.[?]P688.? □

Prop.(0.1.4.7)[Relation to Lubin-Tate space]. Since β is basic, we can associate d = N(β) ∈ D∗
K,1/n

with the same characteristic polynomial. Then for any τ ∈WKr and h ∈ C∞
c (GL(n;OK)), we have

φτ,h(β) = tr
(
τ × d−1 × h∨|[Rψ]

)
.

⌟
Proof: Cf.[?]P704. □
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5 Simple Shimura Varieties

Notation(0.1.5.1).
• Let F0 ∈ NField be totally real with 2|[F0 : Q].
• Let τ ∈ Σ∞

F0
and x0 ∈ Σfin

F0
.

• Let K ⊂ C be an imaginary quadratic field s.t. the rational prime below x0 splits in K.
• Let F = F0K and SF (x0) = {x, xc}.
• Let n ∈ Z+.

⌟
Prop.(0.1.5.2)[Simple Unitary Groups]. There exists D ∈ AzF of dimension n2 with an involution
∗ of second kind, and a homomorphism h0 : C→ Dτ s.t.

• x→ h0(i)−1x∗h0(i) is a positive involution on D⊗R.
• D splits at all places v ∈ ΣF \ {x, xc}.
• The algebraic group G0 ⊂ ResF/F0(D) consisting of x s.t. xx∗ = 1 is quasi-split at all non-split

places of F0, unitary of signature (1, n − 1) at τ and unitary of signature (0, n) at all other
infinite places of F0.

Define
G ∈ RedGrp /Q : R 7→ { g ∈ (D⊗R)∗ | gg∗ ∈ R∗ } .

⌟
Proof: Take D = Bop as in [?]Lemma 1.7.1. □

Notation(0.1.5.3).
• Let w ∈ Σfin

F with u = w ∩ K and p = w ∩Q s.t. p is split in K and w /∈ {x, xc}(i.e. D is split
at w).

• Let K = Fw with residue field κ.
• Choose ℓ ∈ Prime \{p} and an isomorphism Qℓ

∼= C.
⌟

Prop.(0.1.5.4)[Globalization]. Any K ∈ p-NField can be realized as K = Fw for some F and w with
the setting as in(0.1.5.1) and(0.1.5.3). ⌟
Proof:

□

Prop.(0.1.5.5) [Shimura Varieties]. Situation as in(0.1.5.2), we can regard h0 as a map S → GR.
Then the datum (G, h−1) defines a tower of Shimura varieties

lim←−
K⊂G(Af )

ShK(G, h−1)

with reflex field E = τ(F ). ⌟
Proof: By [?] and[?]P691. □
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Def.(0.1.5.6) [Automorphic Vector Bundles]. For any ξ ∈ Irradm
Qℓ

(G), we can get a lisse sheaf
Fξ,K ⊂ Locét

Qℓ
(ShK(G)) for any open compact K ⊂ G(Af ) that is small enough. The action of

G(Af ) on ShK(G) extends to FK, and we can consider the cohomologies

H∗
ξ = lim−→

K

H∗
ét(ShK(G),Fξ,K) ∈ Rep(cont,adm)(GalF ×G(Af )).

⌟

Integral Models

Prop.(0.1.5.7)[Integral Models for G]. By our hypothesis(0.1.5.3), if we denote D′ =
∏

w′|u,w′ 6=w
Dw′

and D =
∏
w′|u

Dw′ , then OD = Mat(n;OK) × OD′ , putting us in the situation of(0.1.3.3). And we

have:
GQp = (GD)Qp ×Gm = ResK/Qp

GL(n)× (GD′)Qp ×Gm(0.1.3.3).

In particular, this gives an integral model of GQp .
For any m ∈ N, we can define congruence subgroups

Km
p = (1 = ϖm Mat(n;OK))× (1 + pmOD′)×Z∗

p ⊂ G(Qp).

⌟
Prop.(0.1.5.8) [PEL-Type Integral Models]. Consider the functor on NSch /OK mapping S ∈

NSch /OK to isomorphism classes of typles (A, λ, ι, ηp, ηp) where
• A ∈ AbVar /S is a projective Abelian scheme of relative dimension n2[F0 : Q] up to prime-to-p

isogeny.
• λ : A→ A∨ is a polarization of degree prime to p.
• ι is a ∗Dop homomorphism ODop → EndS(A) satisfying the determinant condition.
• ηp is a Kp-level structure away from p.
• ηp a level-m-structure on H(A) where H(A)⊕H(A)∨ ∼= Tp(A) corresponding to ODop ⊗Zp ∼=
Oop
D ×OD.

and when Kp is small, this functor is represented by a projective scheme ShKp,m, and the generic
fiber of ShKp,m is a disjoint union of #X1(Q,G) copies of the canonical model ShKm

p Kp(G, {h−1})
localized at w. ⌟
Proof: Cf.[?]Section3.1 and 3.4. □

Prop.(0.1.5.9)[Group Actions]. For any ξ ∈ Irradm
Qℓ

(G), we can associate lisse Qℓ-sheaves on ShKp,m

compatible with the sheaf Fξ,Km
p Kp on the generic fiber.

And there is an obvious action of O∗
D ×G(Ap

f ) on these integral models compatible with these
lisse sheaves. ⌟
Proof:

□
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6 Langlands-Kottwitz Method

Prop.(0.1.6.1). For any πf ∈ Irradm(G(Af )) and ξ ∈ Irradm
Qℓ

(G), consider

H∗
ξ [πf ] ∈ Rep(GalF )(0.1.5.6).

Then a theorem of Kottwitz implies that πf appears in either odd dimension of even dimension?.
Thus ±[Hξ][πf ] is an genuine representation.

And there exists a(πf ) ∈ N s.t. |dim[Hξ][πf ]| = a(πf )n for any ξ.? ⌟
Def.(0.1.6.2). Define

f = h∨ × h′ × 1Z∗
p
×fp ∈ C∞

c (G(Af ))

where
h ∈ C∞

c (GL(n;OK);Q), h′ ∈ C∞
c (O∗

D′ ;Q), fp = 1Kpgpgp , gp ∈ G(Ap
f ).

Fix m ∈ Z+ s.t. h∨ × h′ × 1Z∗
p

is bi-Km
p -invariant. ⌟

For τ ∈W+
K with deg(τ) = r, we want to evaluate tr(τ × f |[Hξ]) via Lefschetz trace formula.?

Lemma(0.1.6.3). There is a canonical isomorphism

ÔShKp,0,x
∼= RHy

⊗ ŎK .

⌟
Proof: Cf.[?]P697?. □

Thm.(0.1.6.4).

tr(τ × h∨ × h′ × 1Z∗
p
×fp|[Hξ]) =

∑
(γ0:γ,δ)

c(γ0 : γ, δ) Orbγ(fp) TOrbδσ0(φτ,h,h′ × 1p−1W (κr)∗) tr(γ0|ξ).

where
• γ0 ∈ G(Q) is a semisimple element that becomes elliptic in G(R),
• γ ∈ G(Ap

f ) s.t. γ ∼ γ0 ∈ G(Qℓ) for any ℓ ∈ Prime \{p},
• δ ∈ G(F ) with conditions.

⌟
Proof: Cf.[?]P698. □

Cor.(0.1.6.5).
n tr(τ × h∨ × h′ × 1Z∗

p
×fp|[Hξ]) = tr(f∨

τ,h × h′ × 1Z∗
p
×fp|[Hξ]).

⌟
Proof: Cf.[?]P698. □
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7 Galois Extensions attached to Automorphic Forms
Notation(0.1.7.1). Use notations as in Simple Shimura Varieties. ⌟
Cor.(0.1.7.2). Notation as in Simple Shimura Varieties, assume that πf ∈ Irradm(G(Af )) s.t. H∗

ξ (πf ) 6=
0, and in the decomposition πp = πw ⊗ πwp ⊗ πp,0 corresponding to

G(Qp) = GL(n;F )× (D′)∗ ×Q×
p (0.1.5.7),

assume πp,0 is unramified and let χπp,0 =
(
πp,0 ◦Art−1

Qp

)
|WK

be the quasi-character of WK . Then for
any τ ∈W+

K and h ∈ C∞
c (GL(n;OK)), we have

tr(f∨
τ,h|πw) = 1

a(πf )
tr

(
τ | [Hξ[πf ]]⊗ χπp,0

)
tr(h∨|πw).

⌟
Proof: Cf.[?]P699? □

Def.(0.1.7.3)[Potentially Abelian and Algebraic Representations]. For F ∈ NField and n ∈ Z+,
a Π ∈ Irrcusp(GL(n)/F ) is called potentially Abelian if there exists Σ ∈ Repn(WF ) s.t. Σ|WFv

=
recv(Πv) for any v ∈ ΣF .

Σ ∈ Repfd(WF ) is called algebraic Weil representation if for any τ : F → C, Σ|Wτ is of the
form z 7→ zpzq. ⌟

Def.(0.1.7.4)[L-Algebraic Representations]. Call Π ∈ Irrcusp(GL(n)/F ) L-algebraic if Π∞(n−1
2 ) is

regular algebraic(i.e. has the same infinitesimal character as an algebraic representation of ResF/Q GL(n)).
⌟

Thm.(0.1.7.5) [Harris-Taylor Globalization]. If π ∈ Irradm(GL(n)/K) that is either essentially
square-integrable or generalized Speh, then there exists πf ∈ Irradm(G(Af )) s.t.

• H∗
ξ (πf ) 6= 0(0.1.5.6).

• πp,0 is unramified.
• πw is an unramified twist of π.

⌟
Proof: Cf.[?]Corollary VI.2.5 and Lemma VI.2.11?. □

Cor.(0.1.7.6)[A variant]. If π ∈ Irradm(GL(n)/K) is essentially square-integrable, then ⌟
Thm.(0.1.7.7)[Jacquet-Langlands plus Base Change, Harris-Taylor]. Let Π ∈ Irrcusp(GL(n)/F )

s.t.
• Π∨ ∼= Πc.
• Π∞ is regular algebraic(i.e., it has the same infinitesimal character as an algebraic representa-

tion of ResF/Q GL(n)).
• Πx is square-integrable.

Then there exists
• Some πf ∈ Irradm(G(Af )),
• Some ξ ∈ Repfd(G) s.t. H∗

ξ [πf ] 6= 0.
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• Some algebraic Hecke character ψ of K satisfying the following: For any w ∈ Σfin
F with u = w∩K

and p = w ∩Q s.t. p is split in K and w /∈ {x, xc}, we have

πw ∼= Πw, πp,0 ∼= ψu.

⌟
Proof: Cf.[?].?

Use Theorem VI.1.1 to produce an automorphic representation of D∗. It continues to have
properties analogous to (i) and (ii). Then Lemma VI.2.10, Theorem VI.2.9 and the properties of the
base-change map established in Theorem VI.2.1 finish the proof. □

Thm.(0.1.7.8)[ Theorem 10.6 of Scholze, Deligne-Brylinski(86)/Carayol(86)/Harris-Taylor[?]].
Let Π ∈ Irrcusp(GL(n)/F ) s.t.

• Π∨ ∼= Πc.
• Π is regular algebraic.
• Πx is square-integrable for some x ∈ Σfin

F that is split over F0.
Then there exists a ∈ Z+ and R(Π) ∈ Repan

Qℓ
(GalK) s.t. for any v ∈ Σfin

F \ S(ℓ), we have

R(Π)|WFv
= aσ(Πv)

Moreover, for each v ∈ Σfin
F , the representation Πy is tempered. ⌟

Proof: This is Theorem C of Harris-Taylor.?
Using p-adic Hodge theory, it would be no problem to show that one can choose a = 1, cf. proof

of Proposition VII.1.8 in [?]. Also, this holds for any CM field F , cf. proof of Theorem VII.1.9 of
[?].? □

Cor.(0.1.7.9). Let Π ∈ Irrcusp(GL(n)/F ) s.t.
• Π∨ ∼= Πc.
• Π is L-algebraic(0.1.7.4).
• Πx is square-integrable for some x ∈ Σfin

F that is split over F0.
Then there exists a ∈ Z+ and R(Π) ∈ Repan

Qℓ
(GalK) s.t. for any v ∈ Σfin

F \ S(ℓ), we have

R(Π)|WFv
= a rec′(Πv)

⌟
Proof: It suffices to find a Hecke character χ of F s.t. χ−1 = χc and χ∞(n−1

2 ), which can be done
in the proof of Corollary VII.2.8 of [?]?. □

Thm.(0.1.7.10). Let Π ∈ Irrcusp(GL(n)/F ) s.t. Π∨ ∼= Πc,Π∞ is regular L-algebraic and Πx is super-
cuspidal, then

• If there exists Σ ∈ Repalg,n(WF ) s.t. Σ|WFv
= rec(Πv) for v ∈ Σ∞

F and a.e. v ∈ Σfin
F , then it

holds for any v ∈ ΣF .
• If F ′/F is a cyclic extension of prime degree s.t. there is only one place x′ over x, and the cyclic

base change Π′ of Π to F ′ is potentially Abelian and supercuspidal at x′, then Π is potentially
Abelian.
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⌟
Proof: Cf.[?]Thm13.5? □

Thm.(0.1.7.11)[Harris-Taylor]. Let π ∈ Irradm(GL(n;K)) be essentially square-integrable, then there
exists Π ∈ Irrcusp(GL(n)/F ) s.t.

• Π∨ ∼= Πc.
• Π∞ is regular algebraic.
• Πx is supercuspidal.
• Πw is an unramified twist of π.

⌟
Proof: Cf.[?]Corollary VI.2.6. □

8 Non-Galois Automorphic Induction
Thm.(0.1.8.1)[Non-Galois Automorphic Induction].

• Let F 3
0 /F

2
0 /F

1
0 be totally real fields and 2|[F0 : Q]. Denote n = [F 2

0 /F
1
0 ].

• Suppose F 3
0 /F

1
0 is a solvable Galois extension.

• Let K be an imaginary quadratic field and F i = F i0K.
• Let x ∈ Σfin

F 1 that is split in F 1
0 and inert in F 3.

• Let χ be a Hecke character of F 2 s.t.
– χ = χ ◦ c.
– For any v ∈ Σ∞

F 2 , χv(z) = zpvz−pv , and pv 6= pv′ if v 6= v′.
– The stablizer of χx ◦NmF 3/F 2 in Gal(F 3/F 1) is equal to Gal(F 3/F 2).

Then there exists a potentially Abelian ρ ∈ Irrcusp(GL(n)/F 1) that is associated to IndF 2

F 1 χ. ⌟
Proof:

□
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