
Kolyvagin’s Theorem

Weixiao Lu

May 21, 2023

Contents

1 Introduction 1
1.1 Mordell-Weil and Selmer Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Birch-Swinnerton-Dyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Gross-Zagier and Kolyvagin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Bloch-Kato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview of Kolyvagin’s work 5
2.1 Heegner points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Kolyvagin’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Euler System Relation 7
3.1 Kolyvagin prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Euler System Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Kolyvagin Derivative 9

References 10

1 Introduction

Let’s begin with the initial story of arithmetic of elliptic curve, the following famous Mordell-Weil
theorem:

1.1 Mordell-Weil and Selmer Groups

Theorem 1.1 (Mordell-Weil). Let F be a number field, E/F be an elliptic curve, then E(F ) is a
finitely generated abelian group.

The rank of free part of E(F ) is called algebraic rank or Mordell-Weil rank of E, denoted
by ralg(E). (Indeed, the theorem holds for any global field, but we will concentrate on the number
field case)

The (traditional) proof of Mordell-Weil theorem has two steps:

• Step 1: Prove a weak version, so called “weak Mordell-Weil theorem”.
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• Step 2: Use height machine to deduce Mordell-Weil from weak Mordell-Weil.

While both steps become prototype of many other arguments, Step 1 is closely related to the
topic today. So we will say more words on it. Let’s first recall

Theorem 1.2 (Weak Mordell-Weil). For any positive integer n, E(F )/nE(F ) is a finite abelian
group.

The idea is embed E(F )/nE(F ) into an abelian group which is easier to describe. Consider the
exact sequence of discrete GF := Gal(F sep/F )-module (or étale sheaf)

0→ E[n](F̄ )→ E(F̄ )→ E(F̄ )→ 0

Taking cohomology we get the Kummer map

δ : E(F )/nE(F ) ↪→ H1(F,E[n])

Remark. We use the usual notation that Hi(F,M) := Hi(GF ,M). We also fix embeddings
F̄ ↪→ F̄v for all place v, thus GFv

is regard as a subgroup of GF which is well-defined up to
conjugacy.

We would hope that H1(F,E[n]) is finite, which is, unfortunately always not. (e.g. when E[n]
is defined over F , H1(F,E[n]) = Hom(GF , (Z/nZ)2) which is infinite by global class field theory.
However, by local class field theory, for any place v, H1(Fv, E[n]) is finite. This motivates that we
can find a finite subgroup inside H1(F,E[n]) called Selmer group which is characterized by local
condition, and turns out to be finite and contains image of δ.

Definition 1.3 (Selmer group). Consider the following diagram:

E(F )/nE(F ) H1(F,E[n])

E(Fv)/nE(Fv) H1(Fv, E[n])

δ

locv

δv

Define the n-Selmer group to be

Seln(E) = {α ∈ H1(F,E[n])|locv(α) ∈ im(δv) for any place v}

Proposition 1.4. Seln(E) is a finite abelian group.

In order to prove it, let’s take this opportunity to introduce some important concept.
Let M be a finite discrete GF module, and v is place of F such that |M | and qv are coprime.
We have the following inflation-restriction sequence

0→ H1(F ur
v /Fv,M

Iv )→ H1(Fv,M)→ H1(Iv,M)Gal(Fur
v /Fv) → H2(F ur

v /F,M Iv )

Note that Gal(F ur
v /Fv) is topologically generated by Frob and has cohomological dimension 1.

We actually have

0→ H1(F ur
v /Fv,M

Iv )→ H1(Fv,M)→ H1(Iv,M)Frob=1 → 0
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Definition 1.5. Assume qv and |M | are coprime. Define the finite part or unramified part of
H1(Fv,M) to be

H1
f (Kv,M) := H1(Kur

v ,M)

The quotient H1(Iv,M)Frob=1 is called the singular part. Denoted by H1
s (Fv,M).

We can then introducte Selmer structure

Definition 1.6. Let M be a finite discrete GF module, A Selmer structure for M is a collection
of subgroup Lv ⊂ H1(Fv,M) such that Lv = H1

f (Kv,M) for almost all v.

Proposition 1.7. For elliptic curve E over F , Lv = im(δv) is a Selmer structure. That is im(δv) =
H1

f (Kv, E[n]) for almost all place v of F .

Sketch of the Proof. We show that when E has good reduction at E, then im(δv) = H1
f (Fv, E[n]).

Using Néron model E , we get exact sequence of étale sheaves

0→ E [n]→ E → E → 0

Take long exact sequence of étale cohomology, using the fact that E(Ov) = E(Fv) and H1(Ov, E) =
H1(kv, Ev) = 0. where kv is the residue field.

From a Selmer structure, one can introduce Selmer groups

Definition 1.8. Let L be a Selmer structure for M , define Selmer group of L to be

H1
L(F,M) = {α ∈ H1(K,M)|locv(α) ∈ Lv for all v}

Proposition 1.9. For any Selmer structure L,H1
L(F,M) is finite.

Sketch of the proof. After passing to finite extension (using inflation-restriction sequence), we can
assume the action of GF on M is trivial. Then it follows from the fact that, for any number field
F , the maximal unramified abelian extension of index n is finite over F for any integer n.

Corollary 1.10. Weak Mordell-Weil theorem 1.2 holds.

n-Selmer group also has close relationship with n-torsion part of Tate-Shafarevich group, which
we recall now

Definition 1.11. Define X(E) = {α ∈ H1(F,E)|locv(α) = 0} for all place v.

Conjecture 1.12 (Tate-Shafarevich). |X(E)| <∞.

We have the following useful short exact sequence

0→ E(F )/nE(F )→ Seln(E)→X(E)[n]→ 0

Which is easily deduce from the diagram with exact rows below

0 E(F )/nE(F ) H1(F,E[n]) H1(F,E)[n] 0

0 E(Fv)/nE(Fv) H1(Fv, E[n]) H1(Fv, E)[n] 0
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1.2 Birch-Swinnerton-Dyer

After Mordell-Weil, a natural question is how to understand ralg(E). Recall that for any ellptic
curve over F we have associated Hasse-Weil L-series:

L(E, s) = L(ρE , s) =
∏
v

Lv(E, s)

where Lv(E, s) = (1−avq−s
v +q1−2s

v )−1 when E has good reduction at v and Lv(E, s) = (1−avq−s
v )−1

when E has bad reduction at v.

Theorem 1.13 (Wiles,Taylor-Wiles,Breuil-Conrad-Diamond-Taylor). Assume conductor of E is
N , then L(E, s) = L(f, s) for a newform of weight 2 and level Γ0(N). In particular,L(E, s) has
analytic continuation to C and a functional equation L(E, s) ↔ ϵL(E, 2 − s),ϵ ∈ {±1} is the sign
of E.

Equivalently, there is a non-trivial morphism X0(N)→ E, such morphism is called a modular
parametrization

Conjecturally, this generalize to

Conjecture 1.14 (Modularity). There is a cuspidal automorphic representation of π GL2(AF ) with
same conductor of E such that L(E, s) = L(π, s). In particular, L(E, s) has analytic continuation
to C.

Denote ran(E) = ords=1L(E, s), called the analytic rank of E, by some numerical evidence,
Birch and Swinnerton-Dyer formulate the following conjecture

Conjecture 1.15 (Birch-Swinnerton-Dyer). Let E be an elliptic curve over F , then ralg(E) =
ran(E)

1.3 Gross-Zagier and Kolyvagin

By combining the work of Gross-Zagier and Kolyvagin, we have the following theorem:

Theorem 1.16 (Gross-Zagier,Kolyvagin). For E over Q and k ∈ {0, 1},If ran(E) = k then
ralg(E) = k and |X(E)| <∞

The key is to relate both ralg(E) and ran(E) with the Selmer group, we will explain this in next
section with more details.

1.4 Bloch-Kato

Now we fix a prime p, we get the exact sequence

0→ E(Q)/pE(Q)→ Selp(E)→X(E)[p]→ 0

The first term is related to algebraic rank (up to a finite group), and the third term is conjec-
turally zero (up to a finite group), we can eliminate finite group, by consider for all n, the exact
sequence

0→ E(Q)/pnE(Q)→ Selpn(E)→X(E)[pn]→ 0
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The take colimit

0→ E(Q)⊗Qp/Zp → Selp∞(E)→X(E)[p∞]→ 0

Define rp(E) = corank(Selp∞(E)), then if |X(E)[p∞]| <∞, then rp(E) = ralg(E).

Conjecture 1.17 (Bloch-Kato). rp(E) = ran(E).

Thus, if Tate-Shafarevich conjecture holds, then Bloch-Kato conjecture would imply BSD con-
jecture. And Bloch-Kato conjecture has a vast generalization to all pure geometric p-adic Galois
representations.

Remark. Instead of taking colimit, one can also take limit and get another version of Selp∞(E).
Which can be recovered from Tate module of E by a theorem of Bloch-Kato.

2 Overview of Kolyvagin’s work

Notations

Now we will fix the notation:

• E is an elliptic curve ovre Q with conductor N .

• K is an imaginary quadratic field with discriminant −D and O×
K = {±1}. We assume K and

N satifies the Heegner hypothesis: any prime p divides N split in K. (in particular, N and
D are coprime.) By Chebaterov density, for a fixed N there is infinitely many such K.

• On be the order of conductor n. And Kn will be the corresponding ring class field, Nn =
On ∩N

• Denote Gn to be the Galois group Gal(Kn/K1) ∼= (OK/nOK)×/(Z/nZ)×

Indeed, we have the exact sequence

1→ (Z/n)× → (OK/nOK)× → IK,n ∩ PK/PK,Z

• p will be a prime number which we will concentrate on H1(K,E[p]) or Selp(E) later.

• ℓ will be other specified prime (Kolyvagin prime), which we will use such ℓ to bound Selmer
group.

2.1 Heegner points

Suppose now we have an elliptic curve over Q, with ran(E) = 1, we want to show ralg(E) = 1. That
is E(Q) = Z ⊕ {finite abelian group}. Thus, we first need to know that E(Q) contains a copy of
Z in it. That is, we need to construct a non-torsion point. How to find rational points on elliptic
curve? The Heegner points provide an answer.

Theorem 2.1 (Main theorem of complex multiplication). Let O ⊂ K be an order, then there is a
bijection

{elliptic curves over C with CM by O}/ ∼←→ {C/a|a ∈ Pic(O)}
And all these points are defined over the ring class field of O.
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Let On be the order of conductor n and Nn = On ∩ N . For n prime to N , Nn is an invertible
On module with On/Nn

∼= Z/NZ. (since Nn =
∏
(pi ∩ On).)

Thus C/On → C/N−1 is a cyclic isogeny of degree N , which defines a point on X0(N)(C), by
the main theorem of complex multiplication, it indeed lines in X0(N)(Kn). Denote this point by
xn. Using the modular parametrization φ : X0(N) → E, we get a point yn := φ(xn) ∈ E(Kn).
These are called Heegner points.

In particular, y1 ∈ E(K1), where K1 is the Hilbert class field of K. Define yK = TrK1/K(y1) =∑
σ∈Gal(K1/K) σ(y1) ∈ E0(K). We have the famous Gross-Zagier formula

Theorem 2.2 (Gross-Zagier).

L′(EK , 1) ∼ ĥ(yK)

As a corollary,

Corollary 2.3. If ords=1L(EK , s) = 1 then ralg(EK) ≥ 1.

The work of Kolyvagin gives another direction of this equality.

Remark. The corollary is about the rank of E over K, thus not the same as that stated in 1.16.
We will come back later to see how to deduce theorem 1.16 from the theorem over K.

2.2 Kolyvagin’s theorem

Following [Gro91], we will prove a weak version of Kolyvagin’s theorem

Theorem 2.4 (Prop. 2.1 of [Gro91]). Let p be an odd prime such that Gal(Q(E[p])/Q) ∼=
GL2(Z/pZ), and p does not divide yK in E(K), then

(1) ralg(EK) = 1.

(2) X(EK)[p] = 0

Remark. • With the same idea but more intricate argument, Kolyvagin proves X(E/K) is
finite.

• A theorem of Serre states that for almost all p, Gal(Q(E[p])/Q) ∼= GL2(Z/pZ).

To prove the theorem 2.4, one first makes the following observation

Lemma 2.5. Assume Gal(Q(E[p])/Q) ∼= GL2(Z/pZ), then E(K)[p] = 0.

Proof. Note that Q(E[p]) and K are linearly disjoint, since they have different set of ramified
primes. Thus Gal(K(E[p])/K) ∼= GL2(Z/pZ). Thus E[p](K) ̸= 0 will yield a contradiction (fixing
a line).

Recall that we have the short excat sequence

0→ E(K)/pE(K)→ Selp(E/K)→X(E/K)[p]→ 0

From the lemma above, ralg(E/K) = dimFp Selp(E/K). Thus we are reduced to prove that
E(K)/pE(K)→ Selp(E/K) is an isomorphism. Indeed, we show
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Proposition 2.6. Let p as in Theorem 2.4, then Selp(E/K) is cyclic and generated by δyK .

The method to prove Proposition 2.6 is as follows:

CM points Coh. class with controlled ramification bound locℓSelp bound Selp
Tate duality Chebaterov density

More precisely, from the Heegner points yn, we will construct a cohomology class c(n) ∈
H1(K,E[p]) with controlled ramification for good n: firstly, we define an operator Dn called Koly-
vagin derivative. It has the properties that δ(Dnyn) ∈ H1(Kn, E[p])Gn . Thus, taking avarage if
Dnyn, we arrive at an element in H1(Kn, E[p])Gn , which turns out to be isomorphic H1(K,E[p]).
Hence get c(n).

The c(n) ∈ H1(K,E[p]) has the properties that it lies in the relaxed Selmer group. Which
means that it lies at almost all local Selmer group (i.e. has controlled ramification).

Assume now we have c(n), we then need a global argument to bound Selmer group.
Then from c(n), by some global duality argument, we control Selp hence prove Proposition 2.6.

3 Euler System Relation

We now start with the actual proof of the theorem. We will discuss some parts of the proof, and
remaining will be settled by next talk by Mikeyal. We start with the relations between the Heegener
points.

3.1 Kolyvagin prime

As mentioned, we will define the cohomology class c(n) for good n, now we specified such n.

Definition 3.1 (Kolyvagin prime). A prime number ℓ is called a Kolyvagin prime if ℓ does not
divide NDp and Frob(ℓ) = Frob(∞) ∈ Gal(K(Ep)/Q).

Equivalently, this means τ ∈ Frob(ℓ), where τ is a complex conjugation.

Remark. Since ℓ not divide pN , K(Ep)/K is unramified at ℓ. Thus ℓ ̸ |pDN implies K(Ep)/Q is
unramified at ℓ. Also, we have E has good reduction at ℓ.

By definition and Chebaterov density, there are infinitely many Kolyvagin prime.

Proposition 3.2. Kolyvagin prime ℓ has the following properties:

(1) ℓ is inert in K.

(2) p|ℓ+ 1 and p|aℓ.

Proof. (1) Frob(ℓ)|K is complex conjugation on K, thus ℓ is inert.

(2) We have Frob(ℓ) = Frob(∞) in Q(E[p])/Q. So they have same characteristic polynomial.
Charateristic polynomial of Frob(ℓ) is x2 − aℓx+ ℓ and characteristic polynomial of complex
conjugation is x2 − 1. Since it acts semisimply on Tate moule with sqaure identity and
determinant −1 (the cyclotomic character)

From now on, we assume n is a product of distinct Kolyvagin prime, and use conductor of order
n to construct cohomology class c(n).

We begin with some preliminaries on the fields Kn.
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Lemma 3.3. Let n be product of distinct Kolyvagin prime, write n = ℓm with ℓ prime. The we
have following field diagram.

Kn

Km Kℓ

K1

K

Q

totally ramified split

split totally ramified

split

inert

which described the ramification behavior of ℓ.
In particular Km ∩Kℓ = K thus Gn

∼= Gm ×Gℓ.

Proof. We have observed before that ℓ is inert in K/Q.
By definition of ring class group, the Artin map gives an isormophism Pic(On)→ Gal(Kn/K),

which maps a prime p to Frob(p) when p is prime to conductor. However, since (ℓ) is principal, so
it maps to the trivial element. Thus ℓ split in Km.

Finally, since K1/K is the maximal unramified abelian extension. The ramification index of ℓ
in Kℓ must be [Kℓ : K1] (otherwise, since Kℓ/K is unramified outside ℓ, we will have unramified
abelian extension of larger degree.)

Remark. In the above proof, we only use the fact that ℓ is inert in K.

By result above, we know Gℓ = (OK/ℓOK)×/(Z/ℓZ)× ∼= F×
ℓ2/F

×
ℓ is a cyclic group of order ℓ+1,

denote σℓ a generator of it.

3.2 Euler System Relation

Define Trℓ =
∑

σ∈Gℓ
σ ∈ Z[Gℓ]. For x ∈ E(Kn) with n = mℓ, Trℓ is a well-defined element in

E(Km).
The Euler system relation is the relation connecting Heegner points yn (Heegner points of

different conductor.)

Proposition 3.4 (Euler system relation). For n = mℓ, where ℓ is inert in K and ℓ does not divide
m.

(1) Trℓymℓ = aℓym ∈ E(Km).

(2) Let λn be any prime of Kn over ℓ, yn ≡ Frob(ym) (mod λn) ∈ Ē(κ(λn))

Proof. (1) Let’s recall that as a consequence of main theorem of complex multiplication, the
action of σ ∈ Gal(Kn/K) on xn ∈ X0(Kn) is given by

σxn = (C/a−1
σ ,C/N−1a−1

σ )
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where aσ is the invertible ideal of On under the Artin map.

Then, using definition of Tℓ and check using complex uniformization yields the equality of
divisor on X0(N):

Tℓxn = Trℓxm

Apply φ then get the result.

(2) By (1), in Eκ(λn), the identity reduce to (ℓ+ 1)xn = Tℓxm (since Kn/Km is totally ramified
at ℓ, so all Galois conjugate reduce to id). Then, using Eichler shimura correpondence, we get
(ℓ+ 1)xn = Frobxm + ℓFrob−1(xm) as divisors(not diviosr class). In particular, we get (2).

4 Kolyvagin Derivative

How to use the Heegner points yn to produce cohomology class in H1(K,E[p])? A naive try is
simply take the trace: for yn ∈ E(Kn), use trace to produce an element in E(K). However, by
Euler system relations, it just gives yK . Thus we need to modify them.

We seek to produce a cohomology class in H1(Kℓ, E[p) which is invariant by Gℓ from the point
yℓ, that is, a class invariant under σℓ. If we try to solve the equation (σℓ − 1)x = 0 for x ∈ Z[Gℓ],
we again arrive at Trℓ. We need a modification of it.

Definition 4.1. Define Kolyvagin derivative operator as a solution of

(σℓ − 1)Dℓ = −Trℓ + ℓ+ 1 ∈ Z[Gℓ]

in Z[Gℓ] (Such Dℓ exists, for example, one can take Dℓ =
∑ℓ

i=1 i · σi
ℓ.)

In general, for n a product of distinct Kolyavgin primes, define Dn =
∏

ℓ|n Dℓ in the decompo-

sition Gn
∼=

∏
Gℓ.

Proposition 4.2. Dnyn ∈ E(Kn)/pE(Kn) is invariant under Gn.

Proof. It suffices to prove (σ − 1)Dnyn ∈ pE(Kn). Indeed, write n = mℓ, then

(σℓ − 1)Dnyn = (ℓ+ 1)Dmyn −Dm(Trℓyn) ∈ pE(Kn).

By the properites of Kolyvagin primes.

0

H1(Kn/K,E)[p]

0 E(K)/pE(K) H1(K,E[p]) H1(K,E)[p] 0

0 (E(Kn)/pE(Kn))
Gn H1(Kn, E[p])Gn H1(Kn, E[p])[p]Gn

Inf

Res Res

Remark on action of complex conjugation:
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Proposition 4.3. Let τ be a complex conjugation, then yτn = ϵ · σ′(yn) = E(Kn)/{torsion} for
some σ′ ∈ Gn

Proposition 4.4. (1) [Pn] ∈ ϵn = ϵ · (−1)fn eigen space of τ for (E(Kn)/pE(Kn))
G
n.

(2) c(n) lies in H1(K,E[p])
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