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1 Review of Rankin-Selberg method

Let F be a number field, A = AF be the adèle ring. π = π1 ⊠ π2 be a cuspidal automorphic
representation of GLn × GLm. In a series of paper of Jacquet,Piatetski-Shapiro and Shalika,
L(s, π) := L(s, π1 × π2) is defined as product of local Rankin-Selberg L-functions.

We will mainly focus on the case where m = n+ 1 and m = n.

1.1 m = n+ 1

For a reductive group G over F , let [G] := G(F )\G(A) be the adèlic quotient.
In this subsection we set G = GLn,F × GLn+1,F and H be the “diagonal” subgroup g 7→(

g,

(
g

1

))
where g ∈ GLn

Assume that π ↪→ Acusp([G]) is cuspidal, the method to establish the analytic property of L(s, π)
is through integral representation.
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Let φ ∈ π, consider

PH(φ, s) =

∫
[H]

φ(h)|deth|s− 1
2 dh

Called the period integral along H. When s = 1
2 , we write PH(·, s) = PH

Proposition 1.1. One has the following result

(1) The integral defining PH(φ, s) is integrable for all s ∈ C, and defines an entire function of s.

(2) When φ = ⊗vφv is factorizable, then PH(φ, s) =
∏
v Iv(φv, s). Let S be the union of

archimedean places and the set of finite places where φv is not spherical, then for v ̸∈ S,
Iv(φv, s) = L(πv, s)

Remark. Iv is defined by local Rankin-Selberg integral

Thus, one has

PH(φ, s) = L(s, π)×

(∏
v∈S

ev(s, φv)

)
where

ev(s, φv) =
Iv(φv, s)

L(s, πv)

It is known that ev(s, φv) is holomorphic for any φv ∈ πv and there exists φv ∈ πv such that
ev(s, φv) is nowhere vanishing. As a consequence

Proposition 1.2.

L(
1

2
, π) ̸= 0 ⇐⇒ PH |π ̸= 0

1.2 m = n

We introduce more notations: for reductive group G over F , let A∞
G be the neutral compoent of

real points of split center of ResF/QG, which is isomorphic to product of positive real line(as Lie
groups). Let G(A)1 be the subgroup of G(A) consists of g such that |χ(g)| = 1 for any χ ∈ X∗(G).
It descends to subset [G]1 of [G]. One then has decomposition

G(A) = G(A)1 ×A∞
G

Also denote the quotient [G]0 = [G]/A∞
G one has canonical isomorphism [G]1 ∼= [G]0.

Let S([G]) be the space of Schwartz function on [G] and T ([G]) be the space of smooth function
on [G] of uniform moderate growth.

We denote An to be the rank n free module over A realized as row vectors, and An be the same
but realized as column vectors.

Now, for this subsection, denote G = GLn,F ×GLn,F and H be the diagonal subgroup GLn,F .
Let π = π1 × π2 be a cuspidal automorphic representation of G(A), for simplicity we assume the
central character of π is trivial on A∞

G (to avoid twist).
Let Φ ∈ S(An) be a Schwartz function on An. One can then defines a Θ-seris on [H]:

Θ(h,Φ) =
∑
v∈Fn

Φ(vh)
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Denote Θ′(h,Φ) = Θ(h,Φ)− Φ(0), then define the mirabolic Eisenstein series as

E(h,Φ, s) =

∫
A∞

G

Θ′(ah,Φ)|det(ah)|sda

The expression is absolutely convergent for Re(s) > 1, and defines a holomorphic map from {s :
Re(s) > 1} to T ([H]), which has a meromorphic continuation with simple poles at s = 0 and s = 1.

For φ ∈ π, define the period

PH,Φ(φ, s) =
∫
[H]0

φ(h)E(h,Φ, s)dh =

∫
[H]

φ(h)Θ′(h,Φ)|deth|sdh

When s = 1
2 , denote PH,Φ(·, s) =: PH,Φ(·). The following proposition is a consequence of

meromorphic continuation of Eisenstein series.

Proposition 1.3. We have the following assertions:

(1) PH,Φ(φ) is meromophic function of s, and it has simple poles 0 and 1 if π∨
2
∼= π1, otherwise

it is entire.

(2) When φ = ⊗φv factorizable and Φ =
∏

Φv factorizable. Then PH,Φ(φ, s) =
∏
v Iv(φv,Φv, s).

Let S be the union of archimedean places and finite places where Φ and φ is not spherical,
then Iv(φv,Φv, s) = L(s, π).

Similar to the situation when m = n+ 1, Iv is local Rankin-Selberg integral and we have

Proposition 1.4.

L(
1

2
, π) ̸= 0 ⇐⇒ PH,Φ|π ̸= 0

2 GGP conjectures for unitary groups

2.1 Base change for unitary groups

Let E/F be a quadratic extension of number field. Let H = Hn be the isomorphism classes of
E/F Hermitian spaces of dimension n, and H− be the isomorphism classes of E/F skew-Hermitian
spaces of dimension n.

For h ∈ H or H−, let U(h) be the unitary group of h. Denote GLn,E := ResE/FGLn, let π
be an automorphic cuspidal representation of U(h)(A). There is a notion of base change of π to
GLn(AE) which we now explain.

Let π be a cuspidal automorphic representation of U(h)(A), we say that an automorphic rep-
resentation Π of GLn,E is a (weak) base change of π if for almost all places v, the Langlands
parameter of Πv is given by BC ◦ ϕπ where ϕπ : WDFv

→ LU(h)Fv
is the Langlands parameter for

π and BC : LU(h)Fv → LGLn,Ev is the base change morphism.

Theorem 2.1 (Mok,Kaletha-Minguez-Shin-White). For all cuspidal automorphic representation π
of U(h), the base change (weak or strong) exists, denote by BC(π).

One can say more if we require the base change is generic.
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Theorem 2.2 (Mok,Kaletha-Minguez-Shin-White). For cuspidal automorphic representation π of
U(h) whose base change is generic. Then Π = BC(π) is of the form Π = Π1⊞· · ·⊞Πk (isobaric sum),

where Πi are distinct unitary cuspidal automorphic representation of GLn,E with L(s,Πi,As(−1)n+1

)
has a pole at s = 1.

We call Π of such form a Hermitian Arthur parameter.

Remark. By a result of Ramakrishnan, any isobaric representation of GLn,E is determined at com-
ponents of finite split places, hence we can determine base change without invoking local Langlands
correspondence for unitary group.

2.2 Bessel case

For h ∈ H, let U(h) be the unitary group of h, we use E to denote the 1-dimension E/F hermitian
spaces with Hermitian metric given by NmE/F and the sum is orthogonal direct sum. Finally, let
Uh = U(h)×U(h⊕ E).

For a Hermitian Arthur parameter for GLn,E×GLn+1,E we mean the representation of the form
Πn ×Πn+1, where each Πk is a Hermitian Arthur parameter of GLk,E for k = n, n+ 1.

Theorem 2.3 (Beuzart-Plessis,Chaudouard,Zydor,based on their earlier works and works of Jacquet-Ral-
lis,Zhang,Xue,Liu,Zhu,Yun,Gordan,...). Let Π be an Arthur Hermitian parameter of GLn,E ×
GLn+1,E . Then the following are equivalent:

(1) L( 12 ,Π) ̸= 0.

(2) There exists h ∈ H and cuspidal automorphic representation σ of Uh such that Π is a weak
base change of σ and

PWh
(φ) =

∫
[U′

h]

φ(h)dh

defines a non-zero linear form on σ.

The period above is called Bessel period

Remark. Low rank case reduced to the famous Waldspurger formula.

Remark. It is proved previously by Wei Zhang under some local conditions and some local condi-
tion are removed by work of Beuzart-Plessis and Hang Xue. Beuzart-Plessis-Liu-Zhang-Zhu then
prove the stable case, that is under the assumption that Π is cuspidal.

2.3 Fourier-Jacobi case

For (h, V ) ∈ H−, let (V0, h0) denote V regarded as a vector space over F together with symplectic
form TrE/Fh.

Let ψ be a non-trivial additive character ψ : F\A → C×, this determines a Weil representation
ω = ωψ of Mp(V0)(A). Fix a polarization V0 = X + Y where X and Y are Lagrangian, then ω is
realized on S(X(A)) (Schrödinger model).

Let η : A× → {±1} be the quadratic character associated to E/F and µ : A×
E → C× be an

extension of η to A×
E . Such µ determines a section U(h)(A) → Mp(h0)(A). Hence (ψ, µ) determines
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a representation of U(h)(A) on S(X(A)). For ϕ ∈ S(X(A)) we can form the theta series as a
function on [U(h)]:

θ(g, ϕ) =
∑

x∈X(F )

ω(g)ϕ(x)

Let Uh = U(h)×U(h) and U′
h denote the diagonal subgroup of Uh. For a cuspidal automorphic

representation σ of Uh and φ ∈ π. The Fourier-Jacobi period is defined as

PU′
h,ϕ

(φ) =

∫
[U′

h]

φ(h)θ(h, ϕ)dh

Theorem 2.4. Let Π be an Arthur Hermitian parameter of GLn,E × GLn,E . Then the following
are equivalent:

(1) L( 12 ,Π⊗ µ−1) ̸= 0.

(2) There exists h ∈ H− and a cuspidal automorphic representation σ of Uh such that Π is a
weak base change of σ and ϕ ∈ S(X(A)) such that PU′

h,ϕ
is non-zero on σ.

This is an ongoing joint work with Paul Boiseau and Hang Xue, it has been proved under some
local assumption by the work of Hang Xue.

3 Relative trace formulas and proofs of global GGP

GGP conjectures look very similar to Rankin-Selberg theory, indeed it is not only the motivation
for proposing GGP but also the proof: compare unitary group to general linear group via relative
trace formula (RTF).

3.1 Quick review of trace formula

Some notation: for reductive group G over F , S(G(A)) denote the space of Schwartz function on
G(A) which is compact supported in non-archimedean place and rapid decreasing in archimedean
place.

For simplicity, let’s assume G is anisotropic, so that [G] is compact, as a consequence L2([G])
decomposes into Hilberg direct sum of (cuspidal) automorphic representations.

G(A) acts on L2([G]) via right translation, for For f ∈ S(A) this induces a right translation
R(f) of S(G(A)) on L2([G]). The operator R(f) is of trace class. The trace formula in this situation
is just compute trR(f) in two different ways.

• Spectrally: for each irreducible component π of L2([G]), the trace of R(f) is given by

trR(f)|π =
∑
φ∈Bπ

⟨R(f)φ,φ⟩

• Geometrically: The action of R(f) is given by the kernel function

Kf (x, y) =
∑

γ∈G(F )

f(x−1γy)
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called the automorphic kernel function, hence the trace of R(f) is given by

trR(f) =

∫
[G]

Kf (x, x)dx

Write G(F ) as union of conjugacy class, each conjugacy class then has contribution to trace
of R(f).

In order to generalize, note that in essesce, we have a decomposition not only the trace, but the
kernel function.

We hace
Kf (x, y) =

∑
π

Kf,π(x, y) =
∑
a

Kf,a(x, y) (1)

where

• π runs through irreducible component of L2([G]). and Kπ is the kernel function of f acting
on π. Concretely

Kπ(x, y) =
∑
φ∈Bπ

R(f)φ(x)φ(y)

• a runs through conjugacy class of G(F ). And Kf,a is the term contributed by a.

integrate the equality (1) among diagonal subgroup yields trace formula.
A key utility of trace formuula is that one can compare trace formula associated to two different

group: there geometric side are “the same”, hence tells us the property of spectral side.

3.2 Jacquet-Rallis RTF and proof of Bessel case

From the equation (1), instead of integrate along diagonal subgroup G ⊂ G×G, one can integrate
along subgroup of the form H1 ×H2. Note that∫

[H1×H2]

Kπ(h1, h2)dh1dh2 =
∑
φ∈Bπ

PH1(R(f)φ)PH2(φ)

Note that periods integral appears! The method to attack period integral via kernel function
is generally called relative trace formula. Jacquet-Rallis developed a relative trace formula to
attack GGP for Un × Un+1: compare the unitary group to general linear group, which (by very
complicated procedure) deduce the Un ×Un+1 GGP to the Rankin-Selberg theory, which we have
introduced in section 1.

To be more precise, on the unitary side consider for fh ∈ S(Uh(A)), the kernel function Kfh on
[Uh]× [Uh], and consider the subgroup U′

h ×U′
h of Uh ×Uh. We want define a distribution

Jh(fh) =

∫
[U′

h]×[U′
h]

Kfh(x, y)dxdy

and expands it spectrally and geometrically.
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• Spectrally: by Langlands spectral decomposition L2([Uh]) =
⊕̂

χ∈X(Uh)
L2
χ([Uh]). Where

X(Uh) stands for the cuspidal datum of Uh. Note that any cuspidal automorphic representa-
tion π is a cuspidal datum with L2

π consists of closures of functions in π.

Let Kfh,χ be the kernel function of R(f) acting on L2
χ([Uh]), thus Kfh =

∑
χKfh,χ. Then

consider

Jhχ(f
h) =

∫
[U′

h]×[U′
h]

Kfh,χ(x, y)dxdy

igoring the issue of convergence, we have spectral expansion.

Jh(fh) =
∑

χ∈X([Uh])

Jhχ(f
h)

and when χ is represented by a cuspidal automorphic representation π

Jhχ(f
h) = Jhπ (f

h) =
∑
φ∈Bπ

PU′
h
(R(fh)φ)PU′

h
(φ).

In particular,
PU′

h
|π ̸= 0 ⇐⇒ Jhπ ̸= 0. (2)

• Geometrically, let A = U′
h\Uh/U′

h be the GIT quotient. For each a ∈ A(F ), let Uh,a be the
fiber. Then for x, y ∈ U′

h(A), one has decomposition

Kfh(x, y) =
∑

a∈A(F )

Kfh,a(x, y)

let

Jha (f
h) =

∫
[U′

h]×[U′
h]

Kf,a(x, y)dxdy

then one has geometric expansion:

Jh(fh) =
∑

a∈A(F )

Jha (f
h)

On the general linear group side, consider G = GLn,E × GLn+1,E and H = GLn,E be the
“diagonal subgroup”, G′ = GLn,F ×GLn+1,F naturally as a subgroup of G. For f ∈ S(G(A)), we
would like to consider the distribution on S(G(A))

I(f) =

∫
[H]×[G′]

Kf (h, g
′)η(g′)dhdg′

where η is the character on G′(A) defined by η(g′n, g
′
n+1) = η(det g′n)

n+1η(det g′n+1)
n.

• Spectrally: for χ ∈ X([G]), define

Iχ(f) =

∫
[H]×[G′]

Kf,χ(h, g
′)η(g′)dhdg′
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then, we have spectral expansion:

I(f) =
∑

χ∈X([G])

Iχ(f) (3)

and when χ is represented by a cuspidal automorphic representation Π of G, we have

Iχ(f) = IΠ(f) =
∑
φ∈BΠ

PH(R(f)φ)PG′,η(φ)

If Π satisfies the condition in GGP conjecture (i.e. conjugate self-dual with pole of Asai
L function), then the result of Flicker-Rallis says PG′ is always non-zero. And by Rankin-
Selberg, PH ̸= 0 ⇐⇒ L( 12 ,Π) ̸= 0

L(
1

2
,Π) ̸= 0 ⇐⇒ IΠ ̸= 0 (4)

• Geometrically, let A′ be the GIT quotient H\G/G′, then we have geometric expansion

I(f) =
∑

a′∈A′(F )

Ia′(f)

An amazing fact is that A ∼= A′, thus we can compare the geometric side of these two RTFs
to get comparison of spectral side.

The above analysis leads to a proof of Bessel GGP for the stable case (that is Π is cuspidal):
By (4) and (2), we are reduced to prove IΠ ̸= 0 ⇐⇒ there exists π with BC(π) = Π and Jπ ̸= 0.

However, comparing geometric side by a result of Yun-Gordan,Beuzart-Plessis (fundamental lemma)
and Zhang,Xue,Choudouard-Zydor (smooth transfer and singular transder), for all f ∈ S(G(A))
there exists a family fh ∈ S(Uh(A)) indexed by H such that

I(f) =
∑
h∈H

J(fh)

By the result of Beuzart-Plessis-Liu-Zhang-Zhu, this implies

IΠ(f) =
∑
h∈H

∑
π:BC(π)=Π

Jhπ (f
h)

this shows the result.
To show the endoscopic case: let Π be a Hermitian Arthur parameter, associated to it we have

a cuspidal datum χ = χΠ. A main result of Beuzart-Plessis-Chaudouard-Zydor shows Iχ ̸= 0 ⇐⇒
L( 12 ,Π) ̸= 0, the remaining argument are the same.

3.3 Liu RTF and proof of Fourier-Jacobi GGP

Yifeng Liu developed a RTF to attack the Fourier-Jacobi case of GGP and it was then developed
by Hang Xue to prove Fourier-Jacobi GGP under some local conditions. The method is again
compares with Rankin-Selberg theory when m = n.
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On the unitary side, denote Uh = U(h) × U(h), and U′
h denote the diagnal subgroup. For

fh ∈ S(Uh(A)) and ϕh1 , ϕh2 ∈ S(X(A)) and x, y ∈ [U′
h] define

Kfh,ϕh
1 ,ϕ

h
2
(x, y) = Kfh(x, y)θ(x, ϕh1 )θ(y, ϕ

h
2 )

We have similar geometric and spectral expansion of the integral∫
[U′

h]×[U′
h]

Kfh,ϕ1,ϕ2
(x, y)dxdy

On the general linear group side, denoteG = GLn,E×GLn,E , letH denote the diagonal subgroup
and G′ = GLn × GLn, for f ∈ S(G(A)) and Φ ∈ S(AE,n), consider for h ∈ [H] and g′ ∈ [G′] the
kernel function

Kf,Φ(h, g
′) = Kf (h, g

′)E(h,Φ)

and consider the geometric and spectral expansion of the integral∫
[H]×[H′]

Kf,Φ(h, g
′)η(g′)dhdg′.

The remaining recipes are the same.
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