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1 Review of Diamond

Recall Perf denotes the sites of perfectoid spaces of characteristic p with pro-étale coverings.

Definition 1.1. A diamond is a sheaf on Perf, which is of the form X/R, where X is a perfectoid
space in characteristic p and R ⊂ X × X is an equivalence relation represented by a perfectoid
space, and R→ X the projections are pro-étale.

Diamonds are perfectoid version of algebraic spaces.

Example 1.2. Any perfectoid space in characteristic p is a diamond.

2 Diamond Associated to Adic Spaces

Now we give the key construction in this talk, X 7→ X�, if X is an analytic space over Zp. This is
generalization of the functor X 7→ X[ when X is perfectoid.

Definition 2.1. Let X be an adic space over Zp, define X� as the functor:

Perfop → Sets
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which sends a perfectoid space T to the isomorphism classes of pair ((T ], ι), f : T ] → X), where
(T ], ι) is an untilt of T and f : T ] → X is a morphism of adic spaces.

If X = Spa(R,R+) is an affinoid adic space over Zp, then X� is denoted by Spd(R,R+).

It should be remark that X� as a functor depends on the tilting equivalenve: for maps φ :
S → T in Perf, and (T ], ι) an untilt of T , then by tilting equivalence, there is a unique S] (up to
isomorphism), such that S] → T ] tilts to S → T . Then define X�(φ) by sending (T ], T ] → X) to
(S], S] → T ] → X).

We will denote S] above as T ]|S .

Remark. • If X is a perfectoid space, then X� is a representable sheaf, represented by X[.

• One can similarly define a category fibered in groupoid(i.e. a prestack) over Perf. But by
tilting equivalence again, the pair (T ], T ] → X) has no non-trivial automorphism in the
groupoid X�(T ), hence it is a presheaf.

The main theorem is following:

Theorem 2.2. If X is an analytic adic space over Zp, then X� is a diamond.

The proof will occupy the whole section.

Remark. By definition, Spd(Zp,Zp) is the functor Untilt, which is a sheaf on Perf, but not a
diamond. The reason is that Zp is not analytic.

To proof the theorem, we first show

Lemma 2.3. X as in the theorem, then X� is a sheaf on Perf.

Proof. Let {Ti → T} be a pro-étale cover in Perf, we need to show

X�(T ) = eq
(∏

X�(Ti) ⇒
∏

X�(Ti ×T Tj)
)
.

Suppose we have given (T ]
i , fi : T ]

i → X) for each i, such that T ]
i |Ti×TTj

= T ]
j |Ti×TTj

, and
fi|Ti×TTj

= fj |Ti×TTj
. Then, since Untilt is a sheaf (mentioned in Hao’s talk, [SW20] Lemma

9.4.5,[Sch17] Lemma 15.1(i)). Thus, there exists a unique T ] ∈ Perfd such that T ]|Ti
= T ]

i .
Thus we only need to show that morphisms glue: there exists a unique f : T ] → X such that
T ]
i → T ] → X is fi. This reduces to the case that X is affinoid, write X = Spa(R,R+) where R is

analytic Huber ring.
The morphisms T ]

i → X gives maps R → Γ(T ]
i ,O) = Γ(T ]

i ,OT ]
proét

), since O is a sheaf on

T ]
proétale, they induceds a unique map R→ O(T ]), thus a map T ] → X.

Thus we have verified X� is a sheaf, to proceed proving X� is a diamond, we then need to show
X� is covered by perfectoid.

Firstly, we do the affinoid case, we then need the following lemma.

Lemma 2.4. (Colmez-Faltings) Let R be a Tate ring, with p topolocially nilpotent, consider
R′ = lim−→Ri étale over R

Ri, then

(1) R′ has a natural structure of Tate ring, and R′ has no finite étale cover.
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(2) R̃ := R̂′ perfectoid, and R→ R̃ is pro-étale.

Proof. Endow R′ inductive topology, then (R′)◦ = lim−→R◦i . then standard argument shows it is a

Tate ring and has no finite étale cover. We now check R̃ = R̂′ is perfectoid ring.
Firstly, we need to find $ ∈ R̃ such that $p|p in R̃◦. Indeed, let $0 be any pseudo-uniformizer

of R◦. Assume $0|pN for large n, the equation xN −$0x = $0 defines a finite étale algebra over
R, since gcd(xN −$0x−$0, Nx

N−1 −$0) = 1 in any residue field.(Note that $0 is a unit!) Let

$ be the image of x ∈ R[x]/(xN −$0x−$0) in R̃. Note implies $ ∈ R̃◦,i.e. it is power bounded.
(Since $ is power bounded in R[x]/(xN −$0x−$0) with canonical topology: its power contained

in R◦ +R◦x+ · · ·+R◦xN−1), $ ∈ R̃ and $N = $0($ + 1) implies $ is topologically nilpotent.

Also note that $N + $0$ = $0 implies $ is a unit in R̃. And since R̃ is complete, 1 + $0 is
unit, thus $N |$0|pN thus $0|p, since (p/$)N is bounded implies p/$ is bounded.

Now, we show that Φ : R̃◦/$ → R̃◦/$ is surjective. Indeed, R′/$ ∼= R̃/$. Thus suffices to
verify this for R̃′, for each f ∈ R′, assume f ∈ Ri, then consider the equation xp −$x = f , which
is finite étale over Ri, hence has a solution in R′.

Remark. I don’t know why R′ or R̃ is uniform.

Thus R̃ is a perfectoid pro-étale cover of R. We can assume R has a perfectoid Galois covering

R̃, with Galois group G = lim←−Gi, where R̃ = l̂im−→Ri, Gi = Gal(Ri/R). Note that the R̃ needs to
be the Tate algebra constructed above, it could be any perfectoid pro-étale covering. For example,
when R = Qp one can take R̃ = Qcycl

p

Our final goal is to prove Spd(R,R+) = Spd(R̃, R̃+)/G, where R̃+ is the completion of integral
closure of R+ in R′. But firstly, lets show that the right hand side is a diamond. More precisely:

Lemma 2.5. G × Spd(R̃, R̃+) → Spd(R̃, R̃+) × Spd(R̃, R̃+)(i.e. the equivalence relation) is an
injection of perfectoid spaces.

Proof. We need to show that, for all algebraically closed perfectoid field C, G(C,C+)×Spd(R̃, R̃+)(C,C+)→
Spd(R̃, R̃+)(C,C+) × Spd(R̃, R̃+)(C,C+) is an injection of sets. That is to say G acts freely on

Spd(R̃, R̃+)(C,C+) = Hom((R̃[, (R̃[)+), (C,C+)), we can further assume that C is of characteristic
p.

Now, assume there exists γ ∈ G such that γ fix f ∈ Hom((R̃[, (R̃[)+), (C,C+)),hence γ fixes

f ∈ Hom((R̃[)+, C+) then γ ∈ G fixes W (f) : W ((R̃[)+,W (C+)), hence quotient I, for I =

ker(W (R̃[)+ → R), we get γ fixes R̃+ → (C])+, where (C], (C])+) is an untilt of (C,C+) (recall

the proof of tilting equivalence), invert $, we get γ fixes R̃ → C], hence fixes each Ri → C].
Standard results of étale morphism shows γ is id on each Ri, hence γ = id.

Thus we get a pro-étale equivalence relation G× Spd(R̃, R̃+)→ Spd(R̃, R̃+)× Spd(R̃, R̃+).
We then need the following lemma

Lemma 2.6. X is a perfectoid space and R ⊂ X × X is a pro-étale equivalence relation, let
Y = X/R, then the natural map R→ X ×Y X is an isomorphism.

Proof. [Sch17] Proposition 11.3(ii).

Thus we have
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Lemma 2.7. The map Spd(R̃, R̃+)→ Spd(R̃, R̃+)/G is an G torsor.

Proof. Base change to Spd(R̃, R̃+) and applies the previous lemma.

Finally

Proposition 2.8. Spd(R̃, R̃+)/G ∼= Spd(R,R+). In particular, Spd(R,R+) is a diamond.

Proof. Since we know both Spd(R̃, R̃+)/G and Spd(R,R+) are sheaves on Perf, we only need
to show they concide on Spa(S, S+) where S is a characteristic p perfectoid ring. i.e., for X =
Spa(S, S+) perfectoid of characteristic p, we need to give a bijection

{X̃ → X a G-torsor,X̃ → Spd(R̃, R̃+), G-equivariant}/ '−→ {(X], X] → Spa(R,R+)}/ '

One the one hand, given X] = Spa(S], S]+) X] → Spa(R,R+), consider X̃] = Spa(S̃], S̃]+),

where S̃] = S]⊗̂RR̃, gives an object in the left hand side. Coversely, given an object in the left
hand side, it descends to an object in the right hand side. More specifically, X̃ ×X X̃ ∼= X × G.
And a maps X̃ → Spd(R̃, R̃+) gives a pair (X], X] → Spa(R̃, R̃+). The action G×X̃ → X̃ gives an
element in Untilt(X×G) by tilting equivalence, G-equivariant means the the projection G×X → X
gives the same element. Thus, by equalizer diagram

Untilt(X)→ Untilt(X̃) ⇒ Untilt(X̃ ×X X̃)

We get an element in Untilt(X). The by G-equivariancy, we get the desired descended morphism.

Finally, we prove theorem mentioned in the beginning of this section

Proof. Affinoid case is proved above, general case is proved by glueing.

We mention another useful property in Scholze’s paper [Sch17].

Proposition 2.9. If Y is a sheaf on Perf, suppose there is X ∈ Perf with pro-étale morphism
X → Y , then Y is a diamond.

Proof. [Sch17] Proposition 11.5.

We give an example

Example 2.10. Let k be a non-arhimedean field of charateristic (0, p), denote Dk the open disc

and D∗k denotes the punctured open disc. Consider Dk → Dk : x 7→ (1 + x)p − 1. Let D̃k = lim←−Dk.

We prove that there is an isomorphism Spd(Qp)× Spd(Qp) ∼= (D̃∗Qp
)�/Z×p

Since SpdQcycl
p → SpdQp is Z×p torsor, so does its base change (D̃∗

Qcycl
p

)� → (D̃∗Qp
)�. Thus

suffices to show there is a Z×p × Z×p equivariant isomorphism

(D̃∗Qcycl
p

)� ∼= SpdQcycl
p × SpdQcycl

p .

This follow from the fact SpdQcycl
p
∼= SpaFp((t1/p

∞
)).
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3 Diamond Associated to Rigid Spaces

For a rigid space, we mean an adic space over a non-archimedean field K, locally of topologically
finite type over Spa(K,K◦).

If X is a rigid space over a non-archimedean field K of characteristic (0, p), we will illustrate
the following:

� : {Rigid Spaces over K} → {Diamonds over SpdK}

is analogous to
| · | : {Analytic Spaces over C} → {Topological Spaces}

We will show

Proposition 3.1. Let f : X → X ′ be a universal homeomorphism of analytic space over K, then
f� : X� → X ′

�
is an isomorphism.

and

Proposition 3.2. The underlying topoloical space |X| can be reconstructed from X�.

First, let’s say some words on Proposition 3.1. Firstly, we have the following fact, analogues in
scheme theory:

Lemma 3.3. Let f : X → X ′ be adic spaces in characteristic 0, then f is a universal homeomor-
phism if and only if f is a homeomorphism and induceds isomorphism on residue fields.

Proof of Proposition 3.1. It suffices to prove, by definition, for all perfectoid space Y (which arises
as untilts, hence not necessarily characteristic p, indeed it lies over X, hence charateristic must be
0), any morphisms f : Y → X ′ uniquely passes through X. Note that we already have a map on
underlying topological space |f | : Y → X, thus we only need to find map of sheaves |f |∗OX → OY .
Then, we can assume Y and X are affinoid.

Note that residue field of X and X ′ are isomorphic implies O+
X′/pn → O+

X/p
n are isomorphic as

sheaves. And Y is perfectoid implies OY = lim←−OY /p
n as sheaves by long exact sequences. Hence

we get the desired map.

Restricted to the class of seminormal rigid spaces, the “forgetful functor” � does not lose infor-
mation:

Definition 3.4. A ring is called seminormal if a2 = b3 implies there exists a unique c such
that a = c3, b = c2. A scheme(or adic space) is called seminormal if it is locally a seminormal
ring(Huber ring).

For more on seminormal ring, see [dJ] Tag 0EUK.

Proposition 3.5 ([SW20] Proposition 10.2.3). The functor

� : {Seminormal Rigid Spaces over K} → {Diamonds over SpdK}

is fully faithful.

Now, we talk about Proposition 3.2. It fits into very general procedure: we can define the
underlying topological space of a diamond.
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Definition 3.6. Let D = X/R be a diamond, with X perfectoid and R pro-étale equivalence
relation. Then define |D| = |X|/|R|, called the underlying topological space of D.

Proposition 3.7. |D| is well defined, independent of choice of (X,R).

We firstly need a lemma

Lemma 3.8. Fiber products and products exist in the category of diamond. Products of diamond
coincides with products of sheaves.

Proof. [Sch17] Proposition 11.4, [SW20] Proposition 8.3.7.

Proof of Proposition 3.7. We follow [Sch17] Proposition 11.13.
Define |D|in, the “intrinsic space”, be the equivalent classes of maps Spa(K,K+)→ Y , where K

is a perfectoid field, K+ is open bounded. And two such maps are equivalent if they are dominated
by a common map.

Then [Sch17] Proposition 11.13 shows that the maps X → D induces a bijection |X|/|R|.
Then, endow |D| with quotient topology. Then, using lemma above to show that the topology
is independent of the choice (recall that pro-étale morphisms induce quotient map on underlying
topological spaces).

One has following results:

Proposition 3.9. If D is qcqs, then |D| is T0.

Recall that for a sheaf F of site, F is called quasi-compact if any surjective map of sheaves
ti∈IFi → F has a finite subcover ti∈I0Fi → F , |I0| < ∞. A sheaf F is called quasi-separted if
for any quasi-compact G,H, with maps G → F ,H → F , the fiber product G×FH is quasi-compact.

Proof. [SW20] Proposition 10.3.4.

Proposition 3.10. There is a bijection of open subspaces |D| and open subdiamond of D.

Proof. [Sch17] Proposition 11.15.

Finally, the following proposition implies Proposition 3.2.

Proposition 3.11. If X is analytic adic space over Zp, then there is a natural homeomorphism
|X�| ∼= |X|

Proof. Reduce to affinoid case, then covering by perfectoid ones, see [Sch17] Lemma 15.6.

4 Sites on a Diamond

Some relevant definitions

Definition 4.1. A map f : F → G of sheaves on Perf is called étale(or finite étale) if f is locally
separated (i.e. there is an open cover of F such that f becomes separated) and any perfectoid space
X, F ×G X → X is étale (or finite étale).

For a diamond Y , define Yét be the site of diamonds étale over Y .
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Theorem 4.2. If X is an analytic adic space over Zp, then X 7→ X� induces an equivalence of
sites Xét

∼= X�ét, which also induces Xfét
∼= X�fét.

Proof. [Sch17] Lemma 15.6.

Thus we can translate étale cohomology of adic spaces as in Huber’s work to the étale cohomology
of diamond in Scholze’s work [Sch17].

There is similarly a notion of quasi-pro-étale site.

5 Local System on Rigid Analytic Spaces

Theorem 5.1. Let K be a complete algebraically closed extension of Qp, (K,OK) Huber pair,X →
Y is proper smooth morphism of rigid-analytic spaces over (K,K+). Let L be an étale Fp-local
system, then Rif∗L is an étale Fp local system on Y .

We focus on the case when Y = Spa(K,OK) is final. That is, we want to prove

Theorem 5.2. Let X be a proper smooth adic space over Spa(k,K+). Then Hi(Xét,L) is finite
dimensional over Fp for i ≥ 0 and vanish for i > 2 dimX.

Some definitions, following [Sch12].

Definition 5.3. • Let X be a locally Noetherian adic space, U ∈ Pro − Xét is called pro-
étale if there exists a presentation U = lim←−Ui, with Ui → X étale and transition morphisms
Ui → Uj is finite étale for i, j large enough.

• U ∈ Xproét is called affinoid perfectoid if U has a pro-étale presentation U = lim←−Ui, such

that Ui = Spa(R,R+) is affinoid, and ̂lim−→(Ri, R
+
i ) is perfectoid ring.

Proposition 5.4 (Colmez). Let K be a perfectoid field, X be a locally Noetherian adic space over
Spa(K,K+), then U ∈ Xproét which are affinoid perfectoid form a basis for the pro-étale topology.

Affnoid perfectoid is similar to contractible open, which has cohomology vanishing property

Lemma 5.5. Let X be a locally Noetherian adic space, U ∈ Xproét is affinoid perfectoid. Then
Hi(U,L⊗O+

X/p) is almost zero.

As a consequence

Lemma 5.6. Let K be a algebraically closed complete extension of Qp, and let X be a proper
smooth adic space over (K,OK). Then Hi

ét(X,L⊗O
+
X/p) is almost finitely generated OK module,

which is almost zero for i > 2 dimX.

Proof. Take affinoid perfectoid cover, then mimic the proof of Cartan-Serre theorem, by some
technical spectral sequence and Cech cohomology argument.

Now we can prove the Theorem 5.2.
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