Diamond Associated to Adic Spaces

Weixiao Lu

May 21, 2023

I will talk about the Lecture X of [SW20]

Contents

1	Review of Diamond	1
2	Diamond Associated to Adic Spaces	1
3	Diamond Associated to Rigid Spaces	5
4	Sites on a Diamond	6
5	Local System on Rigid Analytic Spaces	7
R	eferences	8

1 Review of Diamond

Recall Perf denotes the sites of perfectoid spaces of characteristic p with pro-étale coverings.

Definition 1.1. A diamond is a sheaf on Perf, which is of the form X/R, where X is a perfectoid space in characteristic p and $R \subset X \times X$ is an equivalence relation represented by a perfectoid space, and $R \to X$ the projections are pro-étale.

Diamonds are perfectoid version of algebraic spaces.

Example 1.2. Any perfectoid space in characteristic p is a diamond.

2 Diamond Associated to Adic Spaces

Now we give the key construction in this talk, $X \mapsto X^{\diamond}$, if X is an analytic space over \mathbb{Z}_p . This is generalization of the functor $X \mapsto X^{\flat}$ when X is perfected.

Definition 2.1. Let X be an adic space over \mathbb{Z}_p , define X^{\diamond} as the functor:

$$\operatorname{Perf}^{\operatorname{op}} \to \operatorname{Sets}$$

which sends a perfectoid space T to the isomorphism classes of pair $((T^{\sharp}, \iota), f : T^{\sharp} \to X)$, where (T^{\sharp}, ι) is an until of T and $f : T^{\sharp} \to X$ is a morphism of adic spaces.

If $X = \operatorname{Spa}(R, R^+)$ is an affinoid adic space over \mathbb{Z}_p , then X^\diamond is denoted by $\operatorname{Spd}(R, R^+)$.

It should be remark that X^{\diamond} as a functor depends on the tilting equivalence: for maps ϕ : $S \to T$ in Perf, and (T^{\sharp}, ι) an until of T, then by tilting equivalence, there is a unique S^{\sharp} (up to isomorphism), such that $S^{\sharp} \to T^{\sharp}$ tilts to $S \to T$. Then define $X^{\diamond}(\phi)$ by sending $(T^{\sharp}, T^{\sharp} \to X)$ to $(S^{\sharp}, S^{\sharp} \to T^{\sharp} \to X)$.

We will denote S^{\sharp} above as $T^{\sharp}|_{S}$.

• If X is a perfectoid space, then X^{\diamond} is a representable sheaf, represented by X^{\flat} .

• One can similarly define a category fibered in groupoid (i.e. a prestack) over Perf. But by tilting equivalence again, the pair $(T^{\sharp}, T^{\sharp} \to X)$ has no non-trivial automorphism in the groupoid $X^{\diamond}(T)$, hence it is a presheaf.

The main theorem is following:

Theorem 2.2. If X is an analytic adic space over \mathbb{Z}_p , then X^{\diamond} is a diamond.

The proof will occupy the whole section.

Remark. By definition, $\operatorname{Spd}(\mathbb{Z}_p, \mathbb{Z}_p)$ is the functor Untilt, which is a sheaf on Perf, but not a diamond. The reason is that \mathbb{Z}_p is not analytic.

To proof the theorem, we first show

Lemma 2.3. X as in the theorem, then X^{\diamond} is a sheaf on Perf.

Proof. Let $\{T_i \to T\}$ be a pro-étale cover in Perf, we need to show

$$X^{\diamond}(T) = \operatorname{eq}\left(\prod X^{\diamond}(T_i) \rightrightarrows \prod X^{\diamond}(T_i \times_T T_j)\right).$$

Suppose we have given $(T_i^{\sharp}, f_i : T_i^{\sharp} \to X)$ for each *i*, such that $T_i^{\sharp}|_{T_i \times_T T_j} = T_j^{\sharp}|_{T_i \times_T T_j}$, and $f_i|_{T_i \times_T T_j} = f_j|_{T_i \times_T T_j}$. Then, since Untilt is a sheaf (mentioned in Hao's talk, [SW20] Lemma 9.4.5, [Sch17] Lemma 15.1(i)). Thus, there exists a unique $T^{\sharp} \in$ Perfd such that $T^{\sharp}|_{T_i} = T_i^{\sharp}$. Thus we only need to show that morphisms glue: there exists a unique $f : T^{\sharp} \to X$ such that $T_i^{\sharp} \to T^{\sharp} \to X$ is f_i . This reduces to the case that X is affinoid, write $X = \operatorname{Spa}(R, R^+)$ where R is analytic Huber ring.

analytic Huber ring. The morphisms $T_i^{\sharp} \to X$ gives maps $R \to \Gamma(T_i^{\sharp}, \mathcal{O}) = \Gamma(T_i^{\sharp}, \mathcal{O}_{T_{\text{pro\acute{t}}}^{\sharp}})$, since \mathcal{O} is a sheaf on $T_{\text{pro\acute{tale}}}^{\sharp}$, they induceds a unique map $R \to \mathcal{O}(T^{\sharp})$, thus a map $T^{\sharp} \to X$.

Thus we have verified X^{\diamond} is a sheaf, to proceed proving X^{\diamond} is a diamond, we then need to show X^{\diamond} is covered by perfectoid.

Firstly, we do the affinoid case, we then need the following lemma.

Lemma 2.4. (Colmez-Faltings) Let R be a Tate ring, with p topolocially nilpotent, consider $R' = \varinjlim_{R_i \text{ étale over } R} R_i$, then

(1) R' has a natural structure of Tate ring, and R' has no finite étale cover.

(2) $\widetilde{R} := \widehat{R'}$ perfectoid, and $R \to \widetilde{R}$ is pro-étale.

Proof. Endow R' inductive topology, then $(R')^{\circ} = \varinjlim R_i^{\circ}$. then standard argument shows it is a Tate ring and has no finite étale cover. We now check $\widetilde{R} = \widehat{R'}$ is perfected ring.

Firstly, we need to find $\varpi \in \tilde{R}$ such that $\varpi^p | p$ in \tilde{R}° . Indeed, let ϖ_0 be any pseudo-uniformizer of R° . Assume $\varpi_0 | p^N$ for large n, the equation $x^N - \varpi_0 x = \varpi_0$ defines a finite étale algebra over R, since $\gcd(x^N - \varpi_0 x - \varpi_0, Nx^{N-1} - \varpi_0) = 1$ in any residue field. (Note that ϖ_0 is a unit!) Let ϖ be the image of $x \in R[x]/(x^N - \varpi_0 x - \varpi_0)$ in \tilde{R} . Note implies $\varpi \in \tilde{R}^\circ$, i.e. it is power bounded. (Since ϖ is power bounded in $R[x]/(x^N - \varpi_0 x - \varpi_0)$ with canonical topology: its power contained in $R^\circ + R^\circ x + \cdots + R^\circ x^{N-1}$), $\varpi \in \tilde{R}$ and $\varpi^N = \varpi_0(\varpi + 1)$ implies ϖ is topologically nilpotent.

Also note that $\varpi^N + \varpi_0 \varpi = \varpi_0$ implies ϖ is a unit in \widetilde{R} . And since \widetilde{R} is complete, $1 + \varpi_0$ is unit, thus $\varpi^N |\varpi_0| p^N$ thus $\varpi_0 | p$, since $(p/\varpi)^N$ is bounded implies p/ϖ is bounded.

Now, we show that $\Phi : \tilde{R}^{\circ}/\varpi \to \tilde{R}^{\circ}/\varpi$ is surjective. Indeed, $R'/\varpi \cong \tilde{R}/\varpi$. Thus suffices to verify this for \tilde{R}' , for each $f \in R'$, assume $f \in R_i$, then consider the equation $x^p - \varpi x = f$, which is finite étale over R_i , hence has a solution in R'.

Remark. I don't know why R' or \widetilde{R} is uniform.

Thus \tilde{R} is a perfectoid pro-étale cover of R. We can assume R has a perfectoid Galois covering \tilde{R} , with Galois group $G = \varprojlim G_i$, where $\tilde{R} = \varinjlim R_i$, $G_i = \operatorname{Gal}(R_i/R)$. Note that the \tilde{R} needs to be the Tate algebra constructed above, it could be any perfectoid pro-étale covering. For example, when $R = \mathbb{Q}_p$ one can take $\tilde{R} = \mathbb{Q}_p^{\text{cycl}}$

Our final goal is to prove $\operatorname{Spd}(R, R^+) = \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)/\underline{G}$, where $\widetilde{R^+}$ is the completion of integral closure of R^+ in R'. But firstly, lets show that the right hand side is a diamond. More precisely:

Lemma 2.5. $\underline{G} \times \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+) \to \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+) \times \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)$ (i.e. the equivalence relation) is an injection of perfectoid spaces.

Proof. We need to show that, for all algebraically closed perfectoid field $C, \underline{G}(C, C^+) \times \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)(C, C^+) \to \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)(C, C^+) \times \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)(C, C^+)$ is an injection of sets. That is to say G acts freely on $\operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)(C, C^+) = \operatorname{Hom}((\widetilde{R}^{\flat}, (\widetilde{R}^{\flat})^+), (C, C^+))$, we can further assume that C is of characteristic p.

Now, assume there exists $\gamma \in G$ such that γ fix $f \in \text{Hom}((\widetilde{R}^{\flat}, (\widetilde{R}^{\flat})^+), (C, C^+))$, hence γ fixes $f \in \text{Hom}((\widetilde{R}^{\flat})^+, C^+)$ then $\gamma \in G$ fixes $W(f) : W((\widetilde{R}^{\flat})^+, W(C^+))$, hence quotient I, for $I = \ker(W(\widetilde{R}^{\flat})^+ \to R)$, we get γ fixes $\widetilde{R}^+ \to (C^{\ddagger})^+$, where $(C^{\ddagger}, (C^{\ddagger})^+)$ is an until of (C, C^+) (recall the proof of tilting equivalence), invert ϖ , we get γ fixes $\widetilde{R} \to C^{\ddagger}$, hence fixes each $R_i \to C^{\ddagger}$. Standard results of étale morphism shows γ is id on each R_i , hence $\gamma = \text{id}$.

Thus we get a pro-étale equivalence relation $\underline{G} \times \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+) \to \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+) \times \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)$. We then need the following lemma

Lemma 2.6. X is a perfectoid space and $R \subset X \times X$ is a pro-étale equivalence relation, let Y = X/R, then the natural map $R \to X \times_Y X$ is an isomorphism.

Proof. [Sch17] Proposition 11.3(ii).

Thus we have

Lemma 2.7. The map $\operatorname{Spd}(\widetilde{R}, \widetilde{R}^+) \to \operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)/\underline{G}$ is an \underline{G} torsor.

Proof. Base change to $\operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)$ and applies the previous lemma.

Finally

Proposition 2.8. $\operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)/\underline{G} \cong \operatorname{Spd}(R, R^+)$. In particular, $\operatorname{Spd}(R, R^+)$ is a diamond.

Proof. Since we know both $\operatorname{Spd}(\widetilde{R}, \widetilde{R}^+)/\underline{G}$ and $\operatorname{Spd}(R, R^+)$ are sheaves on Perf, we only need to show they concide on $\operatorname{Spa}(S, S^+)$ where S is a characteristic p perfectoid ring. i.e., for $X = \operatorname{Spa}(S, S^+)$ perfectoid of characteristic p, we need to give a bijection

$$\{\tilde{X} \to X \text{ a } \underline{G}\text{-torsor}, \tilde{X} \to \operatorname{Spd}(\tilde{R}, \tilde{R}^+), \underline{G}\text{-equivariant}\}/\simeq \longrightarrow \{(X^{\sharp}, X^{\sharp} \to \operatorname{Spa}(R, R^+))\}/\simeq$$

One the one hand, given $X^{\sharp} = \operatorname{Spa}(S^{\sharp}, S^{\sharp+}) X^{\sharp} \to \operatorname{Spa}(R, R^+)$, consider $\tilde{X}^{\sharp} = \operatorname{Spa}(\widetilde{S^{\sharp}}, \widetilde{S}^{\sharp+})$, where $\tilde{S}^{\sharp} = S^{\sharp} \widehat{\otimes_R} \tilde{R}$, gives an object in the left hand side. Coversely, given an object in the left hand side, it descends to an object in the right hand side. More specifically, $\tilde{X} \times_X \tilde{X} \cong X \times \underline{G}$. And a maps $\tilde{X} \to \operatorname{Spd}(\tilde{R}, \tilde{R}^+)$ gives a pair $(X^{\sharp}, X^{\sharp} \to \operatorname{Spa}(\tilde{R}, \tilde{R}^+)$. The action $\underline{G} \times \tilde{X} \to \tilde{X}$ gives an element in $\operatorname{Untilt}(X \times \underline{G})$ by tilting equivalence, G-equivariant means the the projection $\underline{G} \times X \to X$ gives the same element. Thus, by equalizer diagram

$$\operatorname{Untilt}(X) \to \operatorname{Untilt}(\tilde{X}) \rightrightarrows \operatorname{Untilt}(\tilde{X} \times_X \tilde{X})$$

We get an element in Untilt(X). The by *G*-equivariancy, we get the desired descended morphism.

Finally, we prove theorem mentioned in the beginning of this section

Proof. Affinoid case is proved above, general case is proved by glueing.

We mention another useful property in Scholze's paper [Sch17].

Proposition 2.9. If Y is a sheaf on Perf, suppose there is $X \in$ Perf with pro-étale morphism $X \to Y$, then Y is a diamond.

Proof. [Sch17] Proposition 11.5.

We give an example

Example 2.10. Let k be a non-arhimedean field of characteristic (0, p), denote \mathbb{D}_k the open disc and \mathbb{D}_k^* denotes the punctured open disc. Consider $\mathbb{D}_k \to \mathbb{D}_k : x \mapsto (1+x)^p - 1$. Let $\widetilde{\mathbb{D}}_k = \underline{\lim} \mathbb{D}_k$.

We prove that there is an isomorphism $\operatorname{Spd}(\mathbb{Q}_p) \times \operatorname{Spd}(\mathbb{Q}_p) \cong (\widetilde{\mathbb{D}}_{\mathbb{Q}_p}^*)^{\diamond}/\mathbb{Z}_p^{\times}$

Since $\operatorname{Spd} \mathbb{Q}_p^{\operatorname{cycl}} \to \operatorname{Spd} \mathbb{Q}_p$ is \mathbb{Z}_p^{\times} torsor, so does its base change $(\widetilde{\mathbb{D}}_{\mathbb{Q}_p^{\operatorname{cycl}}}^{*})^{\diamond} \to (\widetilde{\mathbb{D}}_{\mathbb{Q}_p}^{*})^{\diamond}$. Thus suffices to show there is a $\mathbb{Z}_p^{\times} \times \mathbb{Z}_p^{\times}$ equivariant isomorphism

$$(\widetilde{\mathbb{D}}^*_{\mathbb{Q}^{\mathrm{cycl}}_p})^\diamond \cong \operatorname{Spd} \mathbb{Q}^{\mathrm{cycl}}_p \times \operatorname{Spd} \mathbb{Q}^{\mathrm{cycl}}_p.$$

This follow from the fact $\operatorname{Spd} \mathbb{Q}_p^{\operatorname{cycl}} \cong \operatorname{Spa} \mathbb{F}_p((t^{1/p^{\infty}})).$

3 Diamond Associated to Rigid Spaces

For a rigid space, we mean an adic space over a non-archimedean field K, locally of topologically finite type over $\text{Spa}(K, K^{\circ})$.

If X is a rigid space over a non-archimedean field K of characteristic (0, p), we will illustrate the following:

 $\diamond : \{ \text{Rigid Spaces over } K \} \to \{ \text{Diamonds over Spd } K \}$

is analogous to

 $|\cdot|: \{\text{Analytic Spaces over } \mathbb{C}\} \to \{\text{Topological Spaces}\}$

We will show

Proposition 3.1. Let $f: X \to X'$ be a universal homeomorphism of analytic space over K, then $f^{\diamond}: X^{\diamond} \to X'^{\diamond}$ is an isomorphism.

and

Proposition 3.2. The underlying topoloical space |X| can be reconstructed from X^{\diamond} .

First, let's say some words on Proposition 3.1. Firstly, we have the following fact, analogues in scheme theory:

Lemma 3.3. Let $f: X \to X'$ be adic spaces in characteristic 0, then f is a universal homeomorphism if and only if f is a homeomorphism and induced isomorphism on residue fields.

Proof of Proposition 3.1. It suffices to prove, by definition, for all perfectoid space Y (which arises as untilts, hence not necessarily characteristic p, indeed it lies over X, hence characteristic must be 0), any morphisms $f: Y \to X'$ uniquely passes through X. Note that we already have a map on underlying topological space $|f|: Y \to X$, thus we only need to find map of sheaves $|f|^* \mathcal{O}_X \to \mathcal{O}_Y$. Then, we can assume Y and X are affinoid.

Note that residue field of X and X' are isomorphic implies $\mathcal{O}_{X'}^+/p^n \to \mathcal{O}_X^+/p^n$ are isomorphic as sheaves. And Y is perfected implies $\mathcal{O}_Y = \varprojlim \mathcal{O}_Y/p^n$ as sheaves by long exact sequences. Hence we get the desired map.

Restricted to the class of seminormal rigid spaces, the "forgetful functor" \diamond does not lose information:

Definition 3.4. A ring is called **seminormal** if $a^2 = b^3$ implies there exists a unique *c* such that $a = c^3, b = c^2$. A scheme(or adic space) is called **seminormal** if it is locally a seminormal ring(Huber ring).

For more on seminormal ring, see [dJ] Tag 0EUK.

Proposition 3.5 ([SW20] Proposition 10.2.3). The functor

 \diamond : {Seminormal Rigid Spaces over K} \rightarrow {Diamonds over Spd K}

is fully faithful.

Now, we talk about Proposition 3.2. It fits into very general procedure: we can define the underlying topological space of a diamond.

Definition 3.6. Let $\mathcal{D} = X/R$ be a diamond, with X perfectoid and R pro-étale equivalence relation. Then define $|\mathcal{D}| = |X|/|R|$, called **the underlying topological space** of \mathcal{D} .

Proposition 3.7. $|\mathcal{D}|$ is well defined, independent of choice of (X, R).

We firstly need a lemma

Lemma 3.8. Fiber products and products exist in the category of diamond. Products of diamond coincides with products of sheaves.

Proof. [Sch17] Proposition 11.4, [SW20] Proposition 8.3.7.

Proof of Proposition 3.7. We follow [Sch17] Proposition 11.13.

Define $|\mathcal{D}|_{\text{in}}$, the "intrinsic space", be the equivalent classes of maps $\text{Spa}(K, K^+) \to Y$, where K is a perfectoid field, K^+ is open bounded. And two such maps are equivalent if they are dominated by a common map.

Then [Sch17] Proposition 11.13 shows that the maps $X \to \mathcal{D}$ induces a bijection |X|/|R|. Then, endow $|\mathcal{D}|$ with quotient topology. Then, using lemma above to show that the topology is independent of the choice (recall that pro-étale morphisms induce quotient map on underlying topological spaces).

One has following results:

Proposition 3.9. If \mathcal{D} is qcqs, then $|\mathcal{D}|$ is T_0 .

Recall that for a sheaf \mathcal{F} of site, \mathcal{F} is called **quasi-compact** if any surjective map of sheaves $\sqcup_{i \in I} \mathcal{F}_i \to \mathcal{F}$ has a finite subcover $\sqcup_{i \in I_0} \mathcal{F}_i \to \mathcal{F}, |I_0| < \infty$. A sheaf \mathcal{F} is called **quasi-separted** if for any quasi-compact \mathcal{G}, \mathcal{H} , with maps $\mathcal{G} \to \mathcal{F}, \mathcal{H} \to \mathcal{F}$, the fiber product $\mathcal{G} \times_{\mathcal{F}} \mathcal{H}$ is quasi-compact.

Proof. [SW20] Proposition 10.3.4.

Proposition 3.10. There is a bijection of open subspaces $|\mathcal{D}|$ and open subdiamond of \mathcal{D} .

Proof. [Sch17] Proposition 11.15.

Finally, the following proposition implies Proposition 3.2.

Proposition 3.11. If X is analytic adic space over \mathbb{Z}_p , then there is a natural homeomorphism $|X^{\diamond}| \cong |X|$

Proof. Reduce to affinoid case, then covering by perfectoid ones, see [Sch17] Lemma 15.6. \Box

4 Sites on a Diamond

Some relevant definitions

Definition 4.1. A map $f : \mathcal{F} \to \mathcal{G}$ of sheaves on Perf is called **étale**(or **finite étale**) if f is locally separated (i.e. there is an open cover of \mathcal{F} such that f becomes separated) and any perfectoid space $X, \mathcal{F} \times_{\mathcal{G}} X \to X$ is étale (or finite étale).

For a diamond Y, define $Y_{\text{\acute{e}t}}$ be the site of diamonds étale over Y.

Theorem 4.2. If X is an analytic adic space over \mathbb{Z}_p , then $X \mapsto X^\diamond$ induces an equivalence of sites $X_{\text{\acute{e}t}} \cong X_{\acute{e}t}^\diamond$, which also induces $X_{\text{f\acute{e}t}} \cong X_{\acute{e}t}^\diamond$.

Proof. [Sch17] Lemma 15.6.

Thus we can translate étale cohomology of adic spaces as in Huber's work to the étale cohomology of diamond in Scholze's work [Sch17].

There is similarly a notion of quasi-pro-étale site.

5 Local System on Rigid Analytic Spaces

Theorem 5.1. Let K be a complete algebraically closed extension of \mathbb{Q}_p , (K, \mathcal{O}_K) Huber pair, $X \to Y$ is proper smooth morphism of rigid-analytic spaces over (K, K^+) . Let \mathbb{L} be an étale \mathbb{F}_p -local system, then $R^i f_* \mathbb{L}$ is an étale \mathbb{F}_p local system on Y.

We focus on the case when $Y = \text{Spa}(K, \mathcal{O}_K)$ is final. That is, we want to prove

Theorem 5.2. Let X be a proper smooth adic space over $\text{Spa}(k, K^+)$. Then $H^i(X_{\text{ét}}, \mathbb{L})$ is finite dimensional over \mathbb{F}_p for $i \geq 0$ and vanish for $i > 2 \dim X$.

Some definitions, following [Sch12].

- **Definition 5.3.** Let X be a locally Noetherian adic space, $U \in \text{Pro} X_{\text{\acute{e}t}}$ is called **proétale** if there exists a presentation $U = \varprojlim U_i$, with $U_i \to X$ étale and transition morphisms $U_i \to U_j$ is finite étale for i, j large enough.
 - $U \in X_{\text{proét}}$ is called **affinoid perfectoid** if U has a pro-étale presentation $U = \varprojlim U_i$, such that $U_i = \text{Spa}(R, R^+)$ is affinoid, and $\widehat{\lim(R_i, R_i^+)}$ is perfectoid ring.

Proposition 5.4 (Colmez). Let K be a perfectoid field, X be a locally Noetherian adic space over $\text{Spa}(K, K^+)$, then $U \in X_{\text{pro\acute{e}t}}$ which are affinoid perfectoid form a basis for the pro-étale topology.

Affnoid perfectoid is similar to contractible open, which has cohomology vanishing property

Lemma 5.5. Let X be a locally Noetherian adic space, $U \in X_{\text{proét}}$ is affinoid perfectoid. Then $H^i(U, \mathbb{L} \otimes \mathcal{O}_X^+/p)$ is almost zero.

As a consequence

Lemma 5.6. Let K be a algebraically closed complete extension of \mathbb{Q}_p , and let X be a proper smooth adic space over (K, \mathcal{O}_K) . Then $H^i_{\text{\acute{e}t}}(X, \mathbb{L} \otimes \mathcal{O}^+_X/p)$ is almost finitely generated \mathcal{O}_K module, which is almost zero for $i > 2 \dim X$.

Proof. Take affinoid perfectoid cover, then mimic the proof of Cartan-Serre theorem, by some technical spectral sequence and Cech cohomology argument. \Box

Now we can prove the Theorem 5.2.

References

- [dJ] de Jong. Stacks Project.
- [Sch12] Peter Scholze. *p*-adic hodge theory for rigid-analytic varieties, 2012.
- [Sch17] Scholze. Étale cohomology of diamonds. 2017.
- [SW20] Scholze and Weinstein. Berkeley notes on p-adic Geometry. 2020.