Algebraization of Complex Torus

Weixiao Lu

May 21, 2023

I will talk about the Section 1.3 of [1]

Contents

1 Main Theorem 1
2 First proof: Kodaira Embedding Theorem 2
3 Global Sections of Line Bundles on X 3
4 Second Proof of the Main Theorem 6
5 Some Further Remarks 7
References 7

1 Main Theorem

The main theorem today will be about when a complex torus is algebraic (i.e. has a projective embedding into $\mathbb{C P} \mathbb{P}^{n}$.

Recall that let V be a complex vector space of dimension g and $U \subset V$ is a lattice (free abelian group of rank $2 g$ which span V as a \mathbb{R}-vector space). Then $X=V / U$ is a complex torus, which is a complex compact Lie group and a complex manifold of Kähler type. V and U can be canonically read from $X: V=T_{0} X, U=H_{1}(X ; \mathbb{Z})$.

Also recall that $\mathrm{NS}(X) \subset H^{2}(X ; \mathbb{Z})$ consists of Chern classes of line bundle, which can be identified with Hermitian form on V with imaganary part integral on U.

The main theorem today is
Theorem 1.1. X has an embedding into $\mathbb{C P}^{n} \Longleftrightarrow$ there exists positive definite $H \in \operatorname{NS}(X)$.
Any such H is called polarization for X.
Note that existence of such H is equivalent to an alternating bilinear form E on V such that $E(i x, i y)=E(x, y), E(i x, y)$ is positive definite. Such E is called Riemann form for such (V, U)

By Chows theorem or GAGA, this holds if and only if there exists a projective variety A such that $X=A(\mathbb{C})$. By GAGA again, A has an group scheme structure, which is smooth since X is. Thus, as a corollary

Corollary 1.2. $X=A(\mathbb{C})$ for some abelian variety over \mathbb{C} if and only if there exists a positive definite $H \in \mathrm{NS}(X)$.

We also have
Corollary 1.3. Any complex torus is (complex points of) an elliptic curve, i.e. an embedding into $\mathbb{C} \mathbb{P}^{n}$.

Proof. Proof 1: Take any Hermitian metric h on \mathbb{C}, let e_{1}, e_{2} be a basis for the lattice, then $h / h\left(e_{1}, e_{2}\right)$ is a Riemann form.

Proof 2: Let \wp be the Weierstrass \wp-function for the torus.

$$
\wp(z)=\sum_{u \in U, u \neq 0}\left(\frac{1}{(z-u)^{2}}-\frac{1}{u^{2}}\right)
$$

Proof 3: Any compact Riemann surface is algebraic. (Using Kodaira embedding below, or Riemann-Roch).

Outline of today's talk:

- Prove the main theorem more cleanly by Kodaira embedding theorem.
- Prove the main theorem with hands dirty by analyzing line bundles on X, which also provides more information.

2 First proof: Kodaira Embedding Theorem

We call a compact manifold projective if it can be embedded into $\mathbb{C P}^{n}$, let's recall the theorem:
Theorem 2.1 (Kodaira embedding). Let X be a compact complex manifold of Kähler type, then X is projective if and only if there exists a positive holomorphic line bundle on X.

As a corollary, (together with Lefschetz 1-1 theorem),
Corollary 2.2. Let X be a compact complex manifold, then X is projective if and only if X has a Kähler metric whose fundamental form ω represents an integral cohomology class, i.e. $[\omega] \in$ $H^{2}(X, \mathbb{Z})$.

Let $\mathcal{K}_{X} \subset H^{2}(X ; \mathbb{R})$ be the Kähler cone, i.e. a cohomology class which is represented by a Kähler metrics.

Lemma 2.3. Let $X=V / U$ be a complex torus, then $E \in H^{2}(X ; \mathbb{R}) \cong \operatorname{Alt}(V \times V, \mathbb{R})$ is a Kähler form if and only if E is imaginary part of a positive Hermitian form on V (i.e. E is a positive $(1,1)$ form).

Proof. On the one hand, if E is an alternating forms on V which is imaginary part of a Hermitian form, let H be the Hermitian form, then H defines a Kähler metric on V which descends to a Kähler metric on X.

On the other hand, let g be a Kähler metric on X, with Kähler form ω, let \tilde{g} be the average of g on X with respect to Haar measure:

$$
\tilde{g}(V, W)=\int_{X} g\left(\left(l_{x}\right)_{*} V,\left(l_{x}\right)_{*} W\right) d x
$$

Then the fundamental form of \tilde{g} of average of ω, hence also closed. Thus \tilde{g} is also a Kähler metric, which is translation invariant. Moreover, $[\omega]=\left[\int_{X} \omega\right]$ by Hodge decomposition (note that Harmornic form with respect to constant metric is constant form). Thus any [ω] in the Kähler cone is a positive $(1,1)$ form.

Now we show our main theorem 1.1.
Proof of Theorem 1.1. X is projective $\Longleftrightarrow H^{2}(X ; \mathbb{Z}) \cap \mathcal{K}_{X} \neq \varnothing$. However, $H^{2}(X ; \mathbb{Z}) \subset H^{2}(X ; \mathbb{R})$ is exactly $\operatorname{Alt}(U \times U, \mathbb{Z})$.

We discuss a briefly about the matrix interpretation of above theorem. Assume $V=\mathbb{C}^{g}$, pick a \mathbb{Z}-basis for U, say $e_{1}, \cdots, e_{2 g}$, the $g \times 2 g$ matrix $\Pi=\left(e_{1}, \cdots, e_{2 g}\right) \in \mathrm{M}_{g \times 2 g}(\mathbb{C})$ is called the period matrix. The main theorem can be interpreted as (by some linear algebra), there exists a non-degererate, alternating matrix $A \in \mathrm{M}_{2 g}(\mathbb{Z})$ such that

$$
\Pi A^{-1} \Pi^{t}=0, i \Pi A^{-1} \bar{\Pi}>0
$$

These two are called Riemann relations.
Example 2.4. Let $U \subset \mathbb{C}^{2}$ be the lattice with a \mathbb{Z}-basis $(1,0)^{t},(0,1)^{t},(\sqrt{-2}, \sqrt{-3})^{t},(\sqrt{-5}, \sqrt{-7})^{t}$, then it is not algebraic.

Proof. Indeed, there is no $B \in \mathrm{GL}_{n}(\mathbb{Q})$, such that $\Pi B \Pi^{t}=0$.

3 Global Sections of Line Bundles on X

Recall in the precious talk we know the line bundles on X has a concrete description: let $\mathcal{P}=(H, \alpha)$, H is a Hermitian metric on V whose imaginary part E is integer valued on U and α is a semicharacter with respect to $H: \alpha\left(u_{1}+u_{2}\right)=\mathrm{e}^{\mathrm{i} \pi E\left(u_{1}, u_{2}\right)} \alpha\left(u_{1}\right) \alpha\left(u_{2}\right)$. Then the short exact sequence

$$
0 \rightarrow \operatorname{Pic}^{0}(X) \rightarrow \operatorname{Pic}(X) \rightarrow \mathrm{NS}(X) \rightarrow 0
$$

can be identified with

$$
0 \rightarrow \operatorname{Hom}\left(U, S^{1}\right) \rightarrow \mathcal{P} \rightarrow\{\text { Hermitian forms with } \operatorname{Im} \mathbb{Z} \text {-valued on } U\}
$$

We denote the additive group $\{$ Hermitian forms with $\operatorname{Im} \mathbb{Z}$-valued on $U\}$ also by $\mathrm{NS}(X)$.
Now, we give a second way of proving the theorem. Firstly, we analysis the global section of line bundles on X.

Let L be a holomorphic line bundle on X, which is given by a pair $(H, \alpha) \in \mathcal{P}$. Thus

$$
\begin{equation*}
H^{0}(X, L)=\left\{\theta: V \rightarrow \mathbb{C} \text { holomorphic, } \theta(z+u)=\alpha(u) e^{\pi H(z, u)+\frac{\pi}{2} H(u, u)} \theta(z) \text { for any } u \in U .\right\} \tag{1}
\end{equation*}
$$

The goal is then solve this functional equation. First, we consider the case where H (or equivalently $E)$ is degenerate.

Lemma 3.1. $N=\operatorname{rad}(H)=\operatorname{rad}(E)$ is a complex subspace of V, and $N \cap U$ is a lattice in N.
Proof. Since $H(x, y)=E(i x, y)+i E(x, y)$ thus $\operatorname{rad}(E)=\operatorname{rad}(H)$, and $\operatorname{rad}(H)$ is a complex subspace. Clearly, $N \cap U$ is the radical of $\left.E\right|_{U}: U \times U \rightarrow \mathbb{Z}$, and $E=(E \mid U)_{\mathbb{R}}$ (base extension of bilinear form), thus $N \cap U$ is a lattice of N comes from the fact the $\operatorname{rad}(B) \otimes_{\mathbb{Z}} \mathbb{R}=\operatorname{rad}\left(B_{\mathbb{R}}\right)$ for any alternating form B on a free abelian group. (Since for such $B, \operatorname{rad}(B)$ is a saturated subgroup, hence a direct summand, then using the usual argument of taking basis).

By lemma above, $N / N \cap U=: Y \hookrightarrow X$ is a complex subtorus.
Lemma 3.2. Any θ in (1) is constant on cosets of N, equivalently, any section of L comes from $\bar{X}:=X / Y$. (with induced α and $E)$.

Proof. Fix $z \in V$, we show θ is constant on $z+N$. Indeed, for any $u \in N \cap U$, (1) shows $\theta(z+u)=\theta(z)$. Thus θ is holomorphic and periodic on $z+N$, thus constant by Liouville theorem (for holomorphic function of several variables).

Thus any θ in 1 comes from V / N, and converesly any $\bar{\theta}$ on V / N gives a θ on V. Thus we reduced to the case where H is non-degenerate.

Lemma 3.3. If H is not positive definite (and non-degenerate), then $H^{0}(X, L)=\{0\}$
Proof. Let W be a negative subspace of H (i.e. $\left.H\right|_{W}$ is nagetive definite), we show that θ in (1) is zero on each coset $z+W$.

Indeed, fix z, from (1), we have $|\theta(z+u)|=|\theta(z)| e^{\pi H(z, u)+\frac{\pi}{2} H(u, u)}$, and $H(u, u)$ goes to 0 as $|u| \rightarrow \infty$ and $u \in W$, which is also the dominant term. Thus θ is bounded on $z+W$, hence constant, hence zero.

We are then interested in the case where H is positive definite. But before proceeding, we give a lemma which is useful here and later.

Lemma 3.4 (Classification of alternating form on free abelian group). Let E be an alternating form on a free abelian group A of rank $2 n$ (not necessarily non-degenerate), then there exists a basis for which the matrix of E is of the form $\left(\begin{array}{cc}0 & D \\ -D & 0\end{array}\right)$, where $D=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right)$ and $d_{1}, \cdots, d_{n} \geq 0$ with $d_{1}\left|d_{2}\right| \cdots \mid d_{n}, d_{i} \geq 0$. Moreover, such d_{i} are unique.

Proof. The number of 0 in D is a half of dimension of radical, thus uniquely determined, we proceed to assume E is non-degenerate.

Pick a symplectic basis of $A_{\mathbb{Q}}$, it is easily seen each $a \in A$ is integral combination of symplectic basis. Thus apply elementary factor theorem.

Uniqueness comes from computing the invariant factors. $\left(C=A C^{\prime} B, C, C^{\prime} \in \mathrm{M}_{n}(\mathbb{Z}), A, B \in\right.$ $\mathrm{GL}_{n}(\mathbb{Z})$, then C, C^{\prime} has the same invariant factors)

The matrix D is called type of E (or H or L), $\operatorname{det} D=\sqrt{\operatorname{det} E}$ is called Pfaffian of E, denoted by $\operatorname{Pf}(E)$, now we begin to solve the case where H is positive definite.

Theorem 3.5. When H is positive definite, $\operatorname{dim} H^{0}(X, L)=\operatorname{Pf}(E)$.

To focus on the main ideas, we first focus on a toy (but illustrating) example:
Let $V=\mathbb{C}, U=\mathbb{Z} \oplus \mathbb{Z i}$, then $H\left(z_{1}, z_{2}\right)=z_{1} \overline{z_{2}}$ is polarization of V. Take $\alpha(a+b \mathrm{i})=\mathrm{e}^{\pi \mathrm{i} a b}$, it is easily check that α is a semicharacter for E. Then, the condition for θ is

$$
\theta(z+u)=\alpha(u) \mathrm{e}^{\pi z \bar{u}+\frac{\pi}{2}|u|^{2}} \theta(z)
$$

Which is equivalent to

$$
\theta(z+1)=e^{\pi z+\frac{\pi}{2}} \theta(z), \theta(z+\mathrm{i})=\mathrm{e}^{-\pi \mathrm{i} z+\frac{\pi}{2}} \theta(z)
$$

We want to make θ periodic, thus consider $\theta^{*}(z)=\theta(z) \mathrm{e}^{-\frac{1}{2} \pi z^{2}}$, then $\theta^{*}(z)$ satisfies

$$
\theta^{*}(z+1)=\theta^{*}(z), \theta^{*}(z+\mathrm{i})=\mathrm{e}^{-\pi} \mathrm{e}^{2 \pi \mathrm{i} z} \theta^{*}(z)
$$

One can then form the Fourier expansion: write

$$
\theta^{*}(z)=\sum_{n \in \mathbb{Z}} c_{n} \mathrm{e}^{2 \pi \mathrm{i} n z}
$$

Then $\theta^{*}(z+\mathrm{i})=\mathrm{e}^{-\pi} \mathrm{e}^{2 \pi \mathrm{i} z} \theta^{*}(z)$ shows

$$
c_{n} / c_{n-1}=\mathrm{e}^{\pi(2 n-1)} .
$$

Thus $c_{n}=e^{-\pi n^{2}}$, we get that

$$
\theta^{*}(z)=c \sum_{n \in \mathbb{Z}} \mathrm{e}^{-\pi n^{2}} \mathrm{e}^{2 \pi \mathrm{i} n z}
$$

for some constant c, which recovers the classical θ function

$$
\theta(z, \tau)=\mathrm{e}^{\pi \mathrm{i} \tau n^{2}} \mathrm{e}^{2 \pi \mathrm{i} n z},(z, \tau) \in \mathbb{C} \times \mathcal{H}
$$

for $\tau=\mathrm{i}$
Now we generalize this for general θ
Proof of the theorem. Choose a basis of U as in the lemma, denote U^{\prime} the sublattice generated by e_{1}, \cdots, e_{g}. Then U^{\prime} generate a maximal isotropic space V^{\prime}, and V^{\prime} is also totally real, i.e. $V \cap i V=0$ (since H is positive definite).

Let $B=\left.H\right|_{V^{\prime}}$ which is a \mathbb{R}-valued bilinear form, extends it to a \mathbb{C}-bilinear form on V (since V^{\prime} is totally real).

Note that $\left.(H-B)\right|_{V \times V^{\prime}}=0$ and $\left.(H-B)\right|_{V^{\prime} \times V}$ satisfies $(H-B)\left(z^{\prime}, z\right)=2 \mathrm{i} E\left(z^{\prime}, z\right)$
Consider $\theta^{*}(z)=\mathrm{e}^{-\frac{\pi}{2} B(z, z)} \theta(z)$, writing $\alpha(u)=\mathrm{e}^{2 \pi \mathrm{i} \lambda(u)}$ for some linear function $U \rightarrow \mathbb{R}$, then θ^{*} satisfying the funtional equation

$$
\begin{equation*}
\theta^{*}(z+u)=\mathrm{e}^{2 \pi \mathrm{i} \lambda(u)} \mathrm{e}^{\pi(H-B)(z, u)+\frac{1}{2} \pi(H-B)(u, u)} \theta^{*}(z) \tag{2}
\end{equation*}
$$

Thus $\mathrm{e}^{-2 \pi \mathrm{i} \lambda(z)} \theta^{*}(z)$ is U^{\prime}-periodic, we can form then Fourier expansion: let $\left(U^{\prime}\right)^{\vee}=\operatorname{Hom}_{\mathbb{Z}}\left(U^{\prime}, \mathbb{Z}\right)$ be the Pontryagin dual of V^{\prime} / U^{\prime}, then

$$
\begin{equation*}
\theta^{*}(z)=\sum_{\chi \in\left(U^{\prime}\right)^{\vee}} c_{\chi} \mathrm{e}^{2 \pi \mathrm{i}(\chi(z)+\lambda(z))} \tag{3}
\end{equation*}
$$

Note that any $u \in U$ defines an element $\hat{u} \in\left(U^{\prime}\right)^{\vee}$ by $\hat{u}\left(u^{\prime}\right)=E\left(u^{\prime}, u\right)$. Plug into the functional equation into Fourier expansion, we see

$$
c_{\chi}=\alpha(u) \mathrm{e}^{\mathrm{i} \pi \hat{u}(u)-2 \pi \mathrm{i}(\chi(u)+\lambda(u))} c_{\chi-\hat{u}}
$$

And conversely, any such $\left\{c_{\chi}\right\}$ defines a θ^{*} satisfy the equation. (Coverge rapidly!) Thus it suffices to compute coker $\left(U \rightarrow\left(U^{\prime}\right)^{\vee}\right)$, which, by the basis above, is easily seen to be $\operatorname{det}(D)$.

4 Second Proof of the Main Theorem

A lemma:
Lemma 4.1 (Theorem of the Square). For $a \in X, t_{a}$ be the translation. Then for any $L \in$ $\operatorname{Pic}(X), t_{a}^{*} L \otimes t_{b}^{*} L \cong L \otimes t_{a+b}^{*} L$

Proof. Compare the associated pair (H, α).
Corollary 4.2. $t_{a}^{*} L \otimes t_{-a}^{*} L=1$, the trivial bundle.
Now, we give another proof of the main theorem 1.1 .
Proposition 4.3. Let X be a omplex torus, L be a holomorphic line bundle on $X, E=c_{1}(X), H$ be the associated Hermitian form, if H is not positive definite, then L is not very ample, so does powers of L. (i.e. L does not define an embedding into projective space).

Proof. If H is degenerate, then any section of s is constant on a subtorus, if H has negative subspace, then L has no global section. So does positive power of L. (Since assocaited H is a positive multiple).

The next theorem, the theorem of Lefschetz, together with the proposition above, gives another proof to the main theorem.

Theorem 4.4 (Lefschetz). If $L \in \operatorname{Pic}(X)$ with H positive definite, then $L^{\otimes 3}$ is very ample.
Proof Sketch. Step 1: $L^{\otimes 3}$ is globally generated generated. Indeed, by theorem of the sqaure, if θ is a section of L, then for any $a, b, z \mapsto \theta(z-a) \theta(z-b) \theta(z+a+b)$ is a section of $t_{a}^{*} L \otimes t_{b}^{*} L \otimes t_{-(a+b)}^{*} L \cong$ $L^{\otimes 3}$. Then, for any z, take a, b such that $\theta(z-a), \theta(z-b), \theta(z+a+b)$ all are non-zero suffices.

Step 2: $L^{\otimes 3}$ separate points. That is, for all $z_{1}, z_{2} \in V, z_{1}-z_{2} \notin U$, we want a section ϕ of $L^{\otimes 3}$ such that $\phi\left(z_{1}\right) \neq \phi\left(z_{2}\right)$. We consider the ϕ of the form $\theta(z-a) \theta(z-b) \theta(z+a+b)$ for any $\theta \in$, if $L^{\otimes 3}$ does not separate points, then there exists $\gamma \in \mathbb{C}$ such that for all $a, b, \theta\left(z_{1}+a\right) \theta\left(z_{1}+b\right) \theta\left(z_{1}-a-b\right)=$ $\gamma \theta\left(z_{2}+a\right) \theta\left(z_{2}+b\right) \theta\left(z_{2}-a-b\right)$. Then using some trick to derive a contradiction, which is explained clearly in [1].

Step 3: $L^{\otimes 3}$ separate tangent vector. Assume $z_{0} \in V$ such that the tangent vector $\sum_{i=1}^{g} \alpha_{i} \frac{\partial}{\partial z_{i}}$ maps to 0 . Then there exists α_{0} such that for all ϕ, we have

$$
\alpha_{0} \phi\left(z_{0}\right)+\sum_{i=1}^{g} \alpha_{i} \frac{\partial \phi}{\partial z_{i}}\left(z_{0}\right)=0
$$

That is $D(\log (\phi))=-\alpha_{0}$, where $D=\sum_{i=1}^{g} \alpha_{i} \frac{\partial}{\partial z_{i}}$. Take $\phi=\theta(z-a) \theta(z-b) \theta(z+a+b)$ as above, then , let $f=D(\log \theta)(z)$,

$$
f\left(z_{0}-a\right)+f\left(z_{0}-b\right)+f\left(z_{0}+a+b\right)=-\alpha_{0}
$$

This shows f is linear. Then θ satisfies there exists $\alpha \in V$ such that for all $\lambda \in \mathbb{C}, \theta(z+\lambda \alpha)=$ $\mathrm{e}^{c \lambda^{2}+\lambda f(z)} \theta(z)$, for some $c \in \mathbb{C}$, which contradicts with the functinoal equation.

5 Some Further Remarks

Recall that algebraic dimension $a(X)$ of a compact complex manifold is the transcendence dimension of the field of meromorphic function.

Proposition 5.1. A complex torus of dimension g is algebraic if and only if $a(X)=g$.
Another remarks is that
Proposition 5.2. For almost all lattice $U \subset \mathbb{C}^{n}, \mathbb{C}^{n} / U$ is not algebraic.
We also remark that higher cohomology groups of L can also be computed, for example, we have

Proposition 5.3. If E is nondegnerate, assume the signature of H is (r, s), then $H^{q}(X, L)=0$ unless $q=s$ and

$$
\operatorname{dim} H^{s}(X, L)=\operatorname{Pf}(E)
$$

References

[1] Mumford. Abelian Variety.

