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1 Main Theorem

The main theorem today will be about when a complex torus is algebraic (i.e. has a projective
embedding into CPn.

Recall that let V be a complex vector space of dimension g and U ⊂ V is a lattice (free abelian
group of rank 2g which span V as a R-vector space). Then X = V/U is a complex torus, which is
a complex compact Lie group and a complex manifold of Kähler type. V and U can be canonically
read from X:V = T0X,U = H1(X;Z).

Also recall that NS(X) ⊂ H2(X;Z) consists of Chern classes of line bundle, which can be
identified with Hermitian form on V with imaganary part integral on U .

The main theorem today is

Theorem 1.1. X has an embedding into CPn ⇐⇒ there exists positive definite H ∈ NS(X).

Any such H is called polarization for X.
Note that existence of such H is equivalent to an alternating bilinear form E on V such that

E(ix, iy) = E(x, y), E(ix, y) is positive definite. Such E is called Riemann form for such (V,U)
By Chows theorem or GAGA, this holds if and only if there exists a projective variety A such

that X = A(C). By GAGA again, A has an group scheme structure, which is smooth since X is.
Thus, as a corollary
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Corollary 1.2. X = A(C) for some abelian variety over C if and only if there exists a positive
definite H ∈ NS(X).

We also have

Corollary 1.3. Any complex torus is (complex points of) an elliptic curve, i.e. an embedding into
CPn.

Proof. Proof 1: Take any Hermitian metric h on C, let e1, e2 be a basis for the lattice, then
h/h(e1, e2) is a Riemann form.

Proof 2: Let ℘ be the Weierstrass ℘-function for the torus.

℘(z) =
∑

u∈U,u 6=0

(
1

(z − u)2
− 1

u2

)

Proof 3: Any compact Riemann surface is algebraic. (Using Kodaira embedding below, or
Riemann-Roch).

Outline of today’s talk:

• Prove the main theorem more cleanly by Kodaira embedding theorem.

• Prove the main theorem with hands dirty by analyzing line bundles on X, which also provides
more information.

2 First proof: Kodaira Embedding Theorem

We call a compact manifold projective if it can be embedded into CPn, let’s recall the theorem:

Theorem 2.1 (Kodaira embedding). Let X be a compact complex manifold of Kähler type, then
X is projective if and only if there exists a positive holomorphic line bundle on X.

As a corollary, (together with Lefschetz 1-1 theorem),

Corollary 2.2. Let X be a compact complex manifold, then X is projective if and only if X
has a Kähler metric whose fundamental form ω represents an integral cohomology class, i.e. [ω] ∈
H2(X,Z).

Let KX ⊂ H2(X;R) be the Kähler cone, i.e. a cohomology class which is represented by a
Kähler metrics.

Lemma 2.3. Let X = V/U be a complex torus, then E ∈ H2(X;R) ∼= Alt(V × V,R) is a Kähler
form if and only if E is imaginary part of a positive Hermitian form on V (i.e. E is a positive (1,1)
form).

Proof. On the one hand, if E is an alternating forms on V which is imaginary part of a Hermitian
form, let H be the Hermitian form, then H defines a Kähler metric on V which descends to a
Kähler metric on X.
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On the other hand, let g be a Kähler metric on X, with Kähler form ω, let g̃ be the average of
g on X with respect to Haar measure:

g̃(V,W ) =

∫
X

g((lx)∗V, (lx)∗W )dx

Then the fundamental form of g̃ of average of ω, hence also closed. Thus g̃ is also a Kähler
metric, which is translation invariant. Moreover, [ω] = [

∫
X
ω] by Hodge decomposition (note that

Harmornic form with respect to constant metric is constant form). Thus any [ω] in the Kähler cone
is a positive (1,1) form.

Now we show our main theorem 1.1.

Proof of Theorem 1.1. X is projective ⇐⇒ H2(X;Z)∩KX 6= ∅. However, H2(X;Z) ⊂ H2(X;R)
is exactly Alt(U × U,Z).

We discuss a briefly about the matrix interpretation of above theorem. Assume V = Cg, pick
a Z-basis for U , say e1, · · · , e2g, the g × 2g matrix Π = (e1, · · · , e2g) ∈ Mg×2g(C) is called the
period matrix. The main theorem can be interpreted as (by some linear algebra), there exists a
non-degererate, alternating matrix A ∈ M2g(Z) such that

ΠA−1Πt = 0, iΠA−1Π > 0.

These two are called Riemann relations.

Example 2.4. Let U ⊂ C2 be the lattice with a Z-basis (1, 0)t, (0, 1)t, (
√
−2,
√
−3)t, (

√
−5,
√
−7)t,

then it is not algebraic.

Proof. Indeed, there is no B ∈ GLn(Q), such that ΠBΠt = 0.

3 Global Sections of Line Bundles on X

Recall in the precious talk we know the line bundles on X has a concrete description: let P = (H,α),
H is a Hermitian metric on V whose imaginary part E is integer valued on U and α is a semicharacter
with respect to H:α(u1 + u2) = eiπE(u1,u2)α(u1)α(u2). Then the short exact sequence

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0

can be identified with

0→ Hom(U, S1)→ P → {Hermitian forms with Im Z-valued on U}

We denote the additive group {Hermitian forms with Im Z-valued on U} also by NS(X).
Now, we give a second way of proving the theorem. Firstly, we analysis the global section of

line bundles on X.
Let L be a holomorphic line bundle on X, which is given by a pair (H,α) ∈ P. Thus

H0(X,L) = {θ : V → C holomorphic, θ(z + u) = α(u)eπH(z,u)+π
2H(u,u)θ(z) for any u ∈ U.} (1)

The goal is then solve this functional equation. First, we consider the case where H (or equivalently
E) is degenerate.
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Lemma 3.1. N = rad(H) = rad(E) is a complex subspace of V , and N ∩ U is a lattice in N .

Proof. SinceH(x, y) = E(ix, y)+iE(x, y) thus rad(E) = rad(H), and rad(H) is a complex subspace.
Clearly, N ∩ U is the radical of E|U : U × U → Z, and E = (E|U)R (base extension of bilinear

form), thus N ∩ U is a lattice of N comes from the fact the rad(B) ⊗Z R = rad(BR) for any
alternating form B on a free abelian group. (Since for such B, rad(B) is a saturated subgroup,
hence a direct summand, then using the usual argument of taking basis).

By lemma above, N/N ∩ U =: Y ↪→ X is a complex subtorus.

Lemma 3.2. Any θ in (1) is constant on cosets of N , equivalently, any section of L comes from
X̄ := X/Y . (with induced α and E).

Proof. Fix z ∈ V , we show θ is constant on z + N . Indeed, for any u ∈ N ∩ U , (1) shows
θ(z + u) = θ(z). Thus θ is holomorphic and periodic on z +N , thus constant by Liouville theorem
(for holomorphic function of several variables).

Thus any θ in 1 comes from V/N , and converesly any θ̄ on V/N gives a θ on V . Thus we reduced
to the case where H is non-degenerate.

Lemma 3.3. If H is not positive definite (and non-degenerate), then H0(X,L) = {0}

Proof. Let W be a negative subspace of H (i.e. H|W is nagetive definite), we show that θ in (1) is
zero on each coset z +W .

Indeed, fix z, from (1), we have |θ(z + u)| = |θ(z)|eπH(z,u)+π
2H(u,u), and H(u, u) goes to 0 as

|u| → ∞ and u ∈W , which is also the dominant term. Thus θ is bounded on z+W , hence constant,
hence zero.

We are then interested in the case where H is positive definite. But before proceeding, we give
a lemma which is useful here and later.

Lemma 3.4 (Classification of alternating form on free abelian group). Let E be an alternating
form on a free abelian group A of rank 2n (not necessarily non-degenerate), then there exists a basis

for which the matrix of E is of the form

(
0 D
−D 0

)
, where D = diag(d1, · · · , dn) and d1, · · · , dn ≥ 0

with d1|d2| · · · |dn, di ≥ 0. Moreover, such di are unique.

Proof. The number of 0 in D is a half of dimension of radical, thus uniquely determined, we proceed
to assume E is non-degenerate.

Pick a symplectic basis of AQ, it is easily seen each a ∈ A is integral combination of symplectic
basis. Thus apply elementary factor theorem.

Uniqueness comes from computing the invariant factors. (C = AC ′B,C,C ′ ∈ Mn(Z), A,B ∈
GLn(Z), then C,C ′ has the same invariant factors)

The matrix D is called type of E (or H or L), detD =
√

detE is called Pfaffian of E, denoted
by Pf(E), now we begin to solve the case where H is positive definite.

Theorem 3.5. When H is positive definite, dimH0(X,L) = Pf(E).
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To focus on the main ideas, we first focus on a toy (but illustrating) example:
Let V = C, U = Z⊕ Zi, then H(z1, z2) = z1z2 is polarization of V . Take α(a+ bi) = eπiab, it is

easily check that α is a semicharacter for E. Then, the condition for θ is

θ(z + u) = α(u)eπzū+π
2 |u|

2

θ(z).

Which is equivalent to

θ(z + 1) = eπz+
π
2 θ(z), θ(z + i) = e−πiz+π

2 θ(z).

We want to make θ periodic, thus consider θ∗(z) = θ(z)e−
1
2πz

2

,then θ∗(z) satisfies

θ∗(z + 1) = θ∗(z), θ∗(z + i) = e−πe2πizθ∗(z).

One can then form the Fourier expansion: write

θ∗(z) =
∑
n∈Z

cne2πinz.

Then θ∗(z + i) = e−πe2πizθ∗(z) shows

cn/cn−1 = eπ(2n−1).

Thus cn = e−πn
2

, we get that

θ∗(z) = c
∑
n∈Z

e−πn
2

e2πinz.

for some constant c, which recovers the classical θ function

θ(z, τ) = eπiτn2

e2πinz, (z, τ) ∈ C×H

for τ = i
Now we generalize this for general θ

Proof of the theorem. Choose a basis of U as in the lemma, denote U ′ the sublattice generated
by e1, · · · , eg. Then U ′ generate a maximal isotropic space V ′, and V ′ is also totally real, i.e.
V ∩ iV = 0 (since H is positive definite).

Let B = H|V ′ which is a R-valued bilinear form, extends it to a C-bilinear form on V (since V ′

is totally real).
Note that (H −B)|V×V ′ = 0 and (H −B)|V ′×V satisfies (H −B)(z′, z) = 2iE(z′, z)
Consider θ∗(z) = e−

π
2B(z,z)θ(z), writing α(u) = e2πiλ(u) for some linear function U → R, then

θ∗ satisfying the funtional equation

θ∗(z + u) = e2πiλ(u)eπ(H−B)(z,u)+ 1
2π(H−B)(u,u)θ∗(z) (2)

Thus e−2πiλ(z)θ∗(z) is U ′-periodic, we can form then Fourier expansion: let (U ′)∨ = HomZ(U ′,Z)
be the Pontryagin dual of V ′/U ′, then

θ∗(z) =
∑

χ∈(U ′)∨

cχe2πi(χ(z)+λ(z)) (3)
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Note that any u ∈ U defines an element û ∈ (U ′)∨ by û(u′) = E(u′, u). Plug into the functional
equation into Fourier expansion, we see

cχ = α(u)eiπû(u)−2πi(χ(u)+λ(u))cχ−û

And conversely, any such {cχ} defines a θ∗ satisfy the equation. (Coverge rapidly!) Thus it
suffices to compute coker(U → (U ′)∨), which, by the basis above, is easily seen to be det(D).

4 Second Proof of the Main Theorem

A lemma:

Lemma 4.1 (Theorem of the Square). For a ∈ X, ta be the translation. Then for any L ∈
Pic(X), t∗aL⊗ t∗bL ∼= L⊗ t∗a+bL

Proof. Compare the associated pair (H,α).

Corollary 4.2. t∗aL⊗ t∗−aL = 1,the trivial bundle.

Now, we give another proof of the main theorem 1.1.

Proposition 4.3. Let X be a omplex torus, L be a holomorphic line bundle on X, E = c1(X), H
be the associated Hermitian form, if H is not positive definite, then L is not very ample, so does
powers of L. (i.e. L does not define an embedding into projective space).

Proof. If H is degenerate, then any section of s is constant on a subtorus, if H has negative
subspace, then L has no global section. So does positive power of L. (Since assocaited H is a
positive multiple).

The next theorem, the theorem of Lefschetz, together with the proposition above, gives another
proof to the main theorem.

Theorem 4.4 (Lefschetz). If L ∈ Pic(X) with H positive definite, then L⊗3 is very ample.

Proof Sketch. Step 1: L⊗3 is globally generated generated. Indeed, by theorem of the sqaure, if θ is
a section of L, then for any a, b, z 7→ θ(z−a)θ(z−b)θ(z+a+b) is a section of t∗aL⊗t∗bL⊗t∗−(a+b)L

∼=
L⊗3. Then, for any z, take a, b such that θ(z − a), θ(z − b), θ(z + a+ b) all are non-zero suffices.

Step 2:L⊗3 separate points. That is, for all z1, z2 ∈ V, z1 − z2 6∈ U , we want a section φ of L⊗3

such that φ(z1) 6= φ(z2). We consider the φ of the form θ(z−a)θ(z−b)θ(z+a+b) for any θ ∈, if L⊗3

does not separate points, then there exists γ ∈ C such that for all a, b, θ(z1+a)θ(z1+b)θ(z1−a−b) =
γθ(z2 +a)θ(z2 + b)θ(z2−a− b). Then using some trick to derive a contradiction, which is explained
clearly in [1].

Step 3:L⊗3 separate tangent vector. Assume z0 ∈ V such that the tangent vector
∑g
i=1 αi

∂
∂zi

maps to 0. Then there exists α0 such that for all φ, we have

α0φ(z0) +

g∑
i=1

αi
∂φ

∂zi
(z0) = 0
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That is D(log(φ)) = −α0, where D =
∑g
i=1 αi

∂
∂zi

. Take φ = θ(z − a)θ(z − b)θ(z + a+ b) as above,
then ,let f = D(log θ)(z),

f(z0 − a) + f(z0 − b) + f(z0 + a+ b) = −α0

This shows f is linear. Then θ satisfies there exists α ∈ V such that for all λ ∈ C, θ(z + λα) =

ecλ
2+λf(z)θ(z), for some c ∈ C, which contradicts with the functinoal equation.

5 Some Further Remarks

Recall that algebraic dimension a(X) of a compact complex manifold is the transcendence di-
mension of the field of meromorphic function.

Proposition 5.1. A complex torus of dimension g is algebraic if and only if a(X) = g.

Another remarks is that

Proposition 5.2. For almost all lattice U ⊂ Cn, Cn/U is not algebraic.

We also remark that higher cohomology groups of L can also be computed, for example, we
have

Proposition 5.3. If E is nondegnerate, assume the signature of H is (r, s),then Hq(X,L) = 0
unless q = s and

dimHs(X,L) = Pf(E)
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