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1 Main Theorem

The main theorem today will be about when a complex torus is algebraic (i.e. has a projective
embedding into CP".

Recall that let V' be a complex vector space of dimension g and U C V is a lattice (free abelian
group of rank 2¢ which span V as a R-vector space). Then X = V/U is a complex torus, which is
a complex compact Lie group and a complex manifold of Kéhler type. V and U can be canonically
read from X:V =T, X,U = H1(X;Z).

Also recall that NS(X) C H?(X;Z) consists of Chern classes of line bundle, which can be
identified with Hermitian form on V with imaganary part integral on U.

The main theorem today is

Theorem 1.1. X has an embedding into CP" <= there exists positive definite H € NS(X).

Any such H is called polarization for X.

Note that existence of such H is equivalent to an alternating bilinear form E on V such that
E(iz,iy) = E(x,y), E(iz,y) is positive definite. Such F is called Riemann form for such (V,U)

By Chows theorem or GAGA, this holds if and only if there exists a projective variety A such
that X = A(C). By GAGA again, A has an group scheme structure, which is smooth since X is.
Thus, as a corollary



Corollary 1.2. X = A(C) for some abelian variety over C if and only if there exists a positive
definite H € NS(X).

We also have

Corollary 1.3. Any complex torus is (complex points of) an elliptic curve, i.e. an embedding into
CcP™.

Proof. Proof 1: Take any Hermitian metric h on C, let ej,es be a basis for the lattice, then
h/h(e1,ez) is a Riemann form.
Proof 2: Let p be the Weierstrass gp-function for the torus.

o= 2 ()

Proof 3: Any compact Riemann surface is algebraic. (Using Kodaira embedding below, or
Riemann-Roch).
O

Outline of today’s talk:
e Prove the main theorem more cleanly by Kodaira embedding theorem.

e Prove the main theorem with hands dirty by analyzing line bundles on X, which also provides
more information.

2 First proof: Kodaira Embedding Theorem

We call a compact manifold projective if it can be embedded into CP", let’s recall the theorem:

Theorem 2.1 (Kodaira embedding). Let X be a compact complex manifold of Kéhler type, then
X is projective if and only if there exists a positive holomorphic line bundle on X.

As a corollary, (together with Lefschetz 1-1 theorem),

Corollary 2.2. Let X be a compact complex manifold, then X is projective if and only if X
has a Kahler metric whose fundamental form w represents an integral cohomology class, i.e. [w] €
H*(X,Z).

Let Kx C H?(X;R) be the Kihler cone, i.e. a cohomology class which is represented by a
Kahler metrics.

Lemma 2.3. Let X = V/U be a complex torus, then E € H?(X;R) = Alt(V x V,R) is a Kéhler
form if and only if F is imaginary part of a positive Hermitian form on V (i.e. F is a positive (1,1)
form).

Proof. On the one hand, if F is an alternating forms on V' which is imaginary part of a Hermitian
form, let H be the Hermitian form, then H defines a Kahler metric on V' which descends to a
Kahler metric on X.



On the other hand, let g be a Kéhler metric on X, with Kéhler form w, let § be the average of
g on X with respect to Haar measure:

VW) = /X 9((1)V, (1) W) da

Then the fundamental form of § of average of w, hence also closed. Thus § is also a Ké&hler

metric, which is translation invariant. Moreover, [w] = [/ w] by Hodge decomposition (note that
Harmornic form with respect to constant metric is constant form). Thus any [w] in the Kéhler cone
is a positive (1,1) form. O

Now we show our main theorem [[.1]

Proof of Theorem[1.1} X is projective < H?*(X;Z)NKx # @. However, H*(X;Z) C H*(X;R)
is exactly Alt(U x U, Z). O

We discuss a briefly about the matrix interpretation of above theorem. Assume V = CY, pick
a Z-basis for U, say eq,--- ,eay, the g x 29 matrix IT = (e, -+ ,eqq) € Mgx24(C) is called the
period matrix. The main theorem can be interpreted as (by some linear algebra), there exists a
non-degererate, alternating matrix A € Mag(Z) such that

AT = 0,dTATI > 0.
These two are called Riemann relations.

Example 2.4. Let U C C? be the lattice with a Z-basis (1,0)%, (0, 1), (v/=2,v/=3)%, (v=5, V=7,
then it is not algebraic.

Proof. Indeed, there is no B € GL,(Q), such that TIBII* = 0. O

3 Global Sections of Line Bundles on X

Recall in the precious talk we know the line bundles on X has a concrete description: let P = (H, a),
H is a Hermitian metric on V whose imaginary part E is integer valued on U and « is a semicharacter
with respect to H:o(ug + ug) = e™F(“1:42)q(uy )a(uy). Then the short exact sequence

0 — Pic’(X) — Pic(X) — NS(X) = 0
can be identified with
0 — Hom(U, S*) — P — {Hermitian forms with Im Z-valued on U}

We denote the additive group {Hermitian forms with Im Z-valued on U} also by NS(X).

Now, we give a second way of proving the theorem. Firstly, we analysis the global section of
line bundles on X.

Let L be a holomorphic line bundle on X, which is given by a pair (H, ) € P. Thus

H°(X,L) = {6 : V — C holomorphic, 8(z + u) = a(u)e™ =W+ EH@W() for any uw e U} (1)

The goal is then solve this functional equation. First, we consider the case where H (or equivalently
E) is degenerate.



Lemma 3.1. N =rad(H) =rad(F) is a complex subspace of V, and NN U is a lattice in N.

Proof. Since H(z,y) = E(ix,y)+iE(x,y) thusrad(F) = rad(H), and rad(H) is a complex subspace.

Clearly, N N U is the radical of E|y : U x U — Z, and E = (E|U)g (base extension of bilinear
form), thus N N U is a lattice of N comes from the fact the rad(B) ®z R = rad(Bg) for any
alternating form B on a free abelian group. (Since for such B, rad(B) is a saturated subgroup,
hence a direct summand, then using the usual argument of taking basis). O

By lemma above, N/NNU =:Y < X is a complex subtorus.

Lemma 3.2. Any 6 in is constant on cosets of N, equivalently, any section of L comes from
X = X/Y. (with induced « and E).

Proof. Fix z € V, we show 0 is constant on z + N. Indeed, for any u € N NU, shows
0(z +u) = 6(z). Thus 6 is holomorphic and periodic on z + N, thus constant by Liouville theorem
(for holomorphic function of several variables). O

Thus any 6 in comes from V/N, and converesly any  on V/N gives a § on V. Thus we reduced
to the case where H is non-degenerate.

Lemma 3.3. If H is not positive definite (and non-degenerate), then H°(X, L) = {0}

Proof. Let W be a negative subspace of H (i.e. H|w is nagetive definite), we show that 6 in (1)) is
zero on each coset z + W.

Indeed, fix z, from , we have |0(z 4 u)| = |0(2)]e™ =W+ 3 Hww) " and H(u,u) goes to 0 as
|u| = oo and u € W, which is also the dominant term. Thus 6 is bounded on z+ W, hence constant,
hence zero. O

We are then interested in the case where H is positive definite. But before proceeding, we give
a lemma which is useful here and later.

Lemma 3.4 (Classification of alternating form on free abelian group). Let E be an alternating
form on a free abelian group A of rank 2n (not necessarily non-degenerate), then there exists a basis
for which the matrix of F is of the form (_OD 2) , where D = diag(dy, -+ ,d,) and dy,--- ,d, >0
with dy|dg|- - |dn,d; > 0. Moreover, such d; are unique.

Proof. The number of 0 in D is a half of dimension of radical, thus uniquely determined, we proceed
to assume E is non-degenerate.

Pick a symplectic basis of Ag, it is easily seen each a € A is integral combination of symplectic
basis. Thus apply elementary factor theorem.

Uniqueness comes from computing the invariant factors. (C = AC'B,C,C’ € M, (Z),A,B €
GL,,(Z), then C,C" has the same invariant factors) O

The matrix D is called type of E (or H or L), det D = v/det F is called Pfaffian of E, denoted
by Pf(E), now we begin to solve the case where H is positive definite.

Theorem 3.5. When H is positive definite, dim H°(X, L) = Pf(E).



To focus on the main ideas, we first focus on a toy (but illustrating) example:
Let V =C,U = Z ® Zi, then H(z1,22) = 2123 is polarization of V. Take a(a + bi) = ™ it is
easily check that « is a semicharacter for . Then, the condition for 6 is

0(z+u) = a(u)e”2ﬁ+%|u‘29(2).
Which is equivalent to
0(z+ 1) =e™20(2),0(2 +1) = e ™ 24(2).
We want to make 6 periodic, thus consider 6*(z) = f(z)e™ 27" then §*(z) satisfies
0 (2 +1) = 0% (2),0%(2 + i) = e "e>™#0%(2).
One can then form the Fourier expansion: write

0*(2) — Z CnCZﬂinZ.

neL
Then 0*(z + i) = e~ "e?™#*0*(2) shows

Cn/cnfl _ eﬂ'(Zn—l).

Thus ¢, = e*’mz, we get that

9* (Z) —c Z e—ﬂ'nze2ﬂ'inz.

n€eZ

for some constant ¢, which recovers the classical 6 function
. 2 .
0(z,7) = ™™ ¥ (2 7)€ C x H

for T =1
Now we generalize this for general 0

Proof of the theorem. Choose a basis of U as in the lemma, denote U’ the sublattice generated
by e1,---,e,. Then U’ generate a maximal isotropic space V', and V'’ is also totally real, i.e.
V NiV =0 (since H is positive definite).

Let B = H|y which is a R-valued bilinear form, extends it to a C-bilinear form on V' (since V’
is totally real).

Note that (H — B)|yxy: = 0 and (H — B)|y/«v satisfies (H — B)(2',z) = 2iE(%, 2)

Consider 0*(z) = e~ 3B(=2)¢(2), writing a(u) = e>™ % for some linear function U — R, then
0* satisfying the funtional equation

9*(2 + u) _ e27ri>\(u)eﬂ(H—B)(z,u)+%7r(H—B)(u,u)9*(Z) (2)

Thus e~ 2™A(2)*(2) is U'-periodic, we can form then Fourier expansion: let ()Y = Homy (U, Z)
be the Pontryagin dual of V'/U’, then

0*(2) = Z €y @2 HA) (3)
NN



Note that any u € U defines an element @ € (U’)Y by 4(u') = E(u/,u). Plug into the functional
equation into Fourier expansion, we see

cy = a(u)eiﬂ'ﬁ(u)727Ti(x(u)+)\(u))Cx_u

And conversely, any such {c,} defines a 6* satisfy the equation. (Coverge rapidly!) Thus it
suffices to compute coker(U — (U’)V), which, by the basis above, is easily seen to be det(D). O

4 Second Proof of the Main Theorem

A lemma:

Lemma 4.1 (Theorem of the Square). For a € X,t, be the translation. Then for any L €
Pic(X), tiL@t;L=L®t; L

Proof. Compare the associated pair (H, «). O
Corollary 4.2. t7L ®t* ,L = 1,the trivial bundle.
Now, we give another proof of the main theorem

Proposition 4.3. Let X be a omplex torus, L be a holomorphic line bundle on X, F = ¢;(X), H
be the associated Hermitian form, if H is not positive definite, then L is not very ample, so does
powers of L. (i.e. L does not define an embedding into projective space).

Proof. If H is degenerate, then any section of s is constant on a subtorus, if H has negative
subspace, then L has no global section. So does positive power of L. (Since assocaited H is a
positive multiple). O

The next theorem, the theorem of Lefschetz, together with the proposition above, gives another
proof to the main theorem.

Theorem 4.4 (Lefschetz). If L € Pic(X) with H positive definite, then L®3 is very ample.

Proof Sketch. Step 1: L®3 is globally generated generated. Indeed, by theorem of the sqaure, if 6 is
a section of L, then for any a,b, z — 6(z—a)0(z—b)0(z+a+b) is a section of t; Lt; L@t™ (L=
L®3. Then, for any z, take a,b such that 0(z — a),0(z — b),0(z + a + b) all are non-zero suffices.

Step 2:L®3 separate points. That is, for all 21,2, € V, 21 — 23 € U, we want a section ¢ of L®3
such that ¢(z1) # ¢(22). We consider the ¢ of the form 6(z —a)0(z —b)0(z+a-+b) for any 0 €, if L®3
does not separate points, then there exists v € C such that for all a, b, 6(z1 +a)0(z1+b)0(z1 —a—b) =
¥0(z2 4+ a)f(z2 +b)0(z2 —a—b). Then using some trick to derive a contradiction, which is explained
clearly in [IJ.

Step 3:L%3 separate tangent vector. Assume zo € V such that the tangent vector Y .7_, o
maps to 0. Then there exists g such that for all ¢, we have

9
621'

g
ag¢(z0) + Zai%(zo) =0
=1

(2



That is D(log(¢)) = —ag, where D = Y7 | O‘ié%' Take ¢ = 0(z — a)f(z — b)0(z + a + b) as above,
then Jlet f = D(log8)(2),

flzo—a)+ f(z0 —b) + f(zo0 +a+b) = —ap

This shows f is linear. Then 6 satisfies there exists a € V such that for all A € C, 0(z + Aa) =
ec>‘2'*"\f(z)9(z)7 for some ¢ € C, which contradicts with the functinoal equation. O

5 Some Further Remarks

Recall that algebraic dimension a(X) of a compact complex manifold is the transcendence di-
mension of the field of meromorphic function.

Proposition 5.1. A complex torus of dimension g is algebraic if and only if a(X) = g.
Another remarks is that
Proposition 5.2. For almost all lattice U € C", C"/U is not algebraic.

We also remark that higher cohomology groups of L can also be computed, for example, we
have

Proposition 5.3. If E is nondegnerate, assume the signature of H is (r,s),then H4(X,L) = 0
unless ¢ = s and

dim H*(X, L) = Pt(E)
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