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1 Review of Formal Schemes and Rigid Analytic Space

1.1 Formal Schemes

The main references are Chapter 10 of [Gro], and Chapter 7 of [Bos].
Let A be an admissible topological ring, we can associate a topologically locally ringed space

(Spf A,OSpf A) to it. Where Spf A consists of open ideals (Spf A = SpecA/I for any ideal of
definition I) and OSpf A = limI OSpecA/I where I runs through all ideal of definition.
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Definition 1.1. A formal scheme is a topologically locally ringed space (X,OX) which is locally
isomorphic to (Spf A,OSpf A) for admissible ring A.

Example 1.2. The category of scheme fully faithfully embeds into category of formal scheme,
locally given by SpecA 7→ Spf A, with A discrete topology. In generally by glueing.

Remark. For a formal scheme X comes from a scheme, OX(X) needs not to be discrete. (It is
called “pseudo-discrete”)

Example 1.3. Let X be a scheme, Y ↪→ X be a closed subscheme, one can form the formal
completion of X along Y , denoted by X̂Y

For example, if X = AnZ, Y = V (p), then X̂Y = Spf Zp〈x1, · · · , xn〉, the Tate algebra.

Example 1.4. In deformation theory, (infinitesimal) deformation functors are often represented
by a formal scheme.

We will define a fully faithful functor

{Adic formal schemes that locally has finitely generated ideal of definition} ↪→ {Adic Spaces}

locally given by Spf A 7→ Spa(A,A).
In particular, the left hand side contains all scheme, thus category of schemes fully-faithfully

embeds into category of adic spaces.
This is useful, since the right hand side contains more points. See section 1.3 for a concrete

example.

1.2 Several Approaches to Non-archimidean Geometry

The main references are [Con]. For a detailed exposition of analytic manifolds and p-adic Lie theory,
see Part II of [Ser], for a detailed exposition of rigid analytic space, see Part I of [Bos]. The theory
of Berkovich spaces is in first 3 chapters of [Berb], a shorter exposition is in [Bera].

1.2.1 k-analytic manifold

The theory of k-analytic manifold mimic the classical differential topology, and have parallel results
with one learned in a first course in differentiale manifold. This theory is good when dealing with
Lie theory, but it has lots of disadvantages:

(1) There are to many analytic functions (e.g. locally constant, locally polynomial)

(2) GAGA fails wildly:

Example 1.5. For all n,m, dimH0(Pn,ank ,OPn,an
k

(m)) = ∞, Hi(Pn,ank ,OPn,an
k

(m)) = 0 for
i > 0.

1.2.2 Tate’s Approach to rigid analytic space

Throughout this subsubsection, let k be a non archimedeal field (i.e. a field with absolute value
which is complete and non-trivial.)

Tate’s solution to get rid of too many “analytic function” is to regard the closed unit polydisc
{x ∈ kn||x1| ≤ 1, · · · , |xn| ≤ 1} as a global object, that is only allow the power series with “radius
of convergence” at least 1 be the function on it.
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Definition 1.6. The Tate Algebra is defined by

k〈T1, · · · , Tn〉 =

{∑
I

aIT
I ∈ k[[T1, · · · , Tn]] | |aI | → 0 as |I| → ∞

}

The Tate algebra is right candidate for functions on closed polydisc, it has following properties:

Proposition 1.7. The Tate algebra k〈T1, · · · , Tn〉 is

(1) a complete Tate ring (indeed a Banach algebra, under Gauss norm |f | = max |aI |). For the
notion of complete Tate ring, see Section 2.4.

(2) a Noetherian, regular, factorial ring, with Krull dimension n. And for all maximal ideal m,
k〈T1, · · · , Tm〉/m is finite extension of k.

(3) Every ideal is closed.

Proof. See [Bos] Chapter 2.

Definition 1.8. A k-affinoid algebra is a k-algebra A such that A ∼= Tn/I for some n and I ⊂ Tn.

The affinoid algebra is an analogue of finite type algebra over a field ,thus it corresponds to
“affine algebraic variety”. For an affinoid algebra A, define M(A) = MaxSpecA. For x ∈M(A), f ∈
A, |f(x)| ∈ R is well defined. The following example (which easily follows from proposition above)
shows that M(A) (together with some structure sheaf) will be a reasonable candidate for study of
non-archimedean geometry.

Example 1.9. • M(Cp〈T1, · · · , Tn〉) = (C◦p)n.

• M(Qp〈T1, · · · , Tn〉) ) Znp .

• M(Cp〈X,Y 〉/(pY −X) = pOCp
.

M(A) has a Hausdorff totally disconnected topology, but this is not satisfiable to set up function
theory, instead, there is a weaker “topology” called Tate topology.

Some related definitions:

Definition 1.10. • A rational Domain is the subset of M(A) of the form

U

(
f1, · · · , fn

g

)
= {x ∈M(A)||fi(x) ≤ |g(x)| 6= 0}

We want rational domains be our “principal open” parallel to D(f) in the theory of schemes.

• U ⊂M(A) is called admissible open if U can be written as union U = ∪Ui such that each
Ui is a rational subdomain, and for all maps between affinoid algebra A → B such that the
induced map M(B)→M(A) has image lies U , then the image lies in fnitely many Ui.

• For V = ∪Vi all of which are admissible open, it is called an admissible cover if for all maps
between affinoid algebra A → B such that the induced map φ : M(B) → M(A) has image
lies in V , then φ−1(Vi) has a refinement by finitely many rational subsets.
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For relevant notion of Laurant subdomain, Weierstrass subdomain and affinoid subdomain, and
the Gerritzen-Grauert theorem, see [Con] or Chapter 3 of [Bos].

Example 1.11. For A = k〈T 〉, both U = {x||x| < 1} and V = {x||x| = 1} are admissible open,
M(A) = U ∪ V , but this is not an admissible cover. This show that M(A) has a great chance to
be “connected”.

Proof. The proof is not hard, see Example 2.2.8 of [Con], based on Maximum Modulus Principle.

The category of admissible open on a given M(A) (with morphisms are inclusion) together with
admissible cover forms a cite. It defines a Grothendieck topology on the category of admissible
open, we say it is a G-topology on M(A). And M(A) is a G-space.

Theorem 1.12 (Tate’s acyclicity theorem). O
(
U
(
f1,··· ,fn

g

))
= A〈T1, · · · , Tn〉/(gT1 − f1, gT2 −

f2, · · · , gTn − fn) defines a sheaf on this site, called the structure sheaf.

Proof. For proof and more precise statements, see Section 4.3 of [Bos].

Definition 1.13. • An affinoid space is a G-topologized space which is isomorphism to
SpA = (M(A),OSpA),

• A rigid analytic space is a locally ringed G-topologized space which is locally an affinoid
space.

Another goal of us is to embed the category of rigid analytic space embeds into category of adic
space, that is there is a fully faithful functor:

{rigid analytic space} ↪→ {adic space}

which sends SpA to Spa(A,A◦) and X to Xad with the following properties:

(1) Xad is a locally ringed space (rather than a G-topologized space) and the underlying topo-
logical space is spectral.

(2) SpA as a set is a subset of Spa(A,A◦). And U 7→ U ∩ A is an inclusion-preserving bijection
between the sets of quasi-compact opens in Spa(A) and quasi-compact admissible opens in
Sp(A), with finite covers correponding to finite admissible covers.

(3) There is an equivalence of category Shv(X) ∼= Shv(Xad) (Hence same sheaf cohomology).

(1) is standard results of adic space, and for proof of (2) and (3) above, see [Hub].

1.2.3 Berkovich Space

TBA
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1.3 Relationship with Formal Scheme

The main references are Section 3 of [Con] and Chapter 8 of [Bos]. They contain definition of some
terminology that does not define below.

Let k be a non-archimedean field, R be the ring of integers. There is a “generic fiber” functor:

{admissible formal R schemes} → {rigid analytic space}

Here admissible means topologically of finite presented and flat. This functor sends X to Xk.

Theorem 1.14 (Raynaud). The following holds:

(1) Every qcqs rigid analytic space over k has a formal model.

(2) Any two formal models of qcqs rigid analytic space are dominated by a common admissible
blow up.

Note that the “generic fiber” is not the literally defined “generic fiber”, since Spf R consists of
one point whose residue field is R/m instead of k. However, if we take adic point of view, the adic
version of Spf R is Spa(R,R), which has a “generic point” corresponds to the usual valuation on
R. And the corresponding generic fiber is the same as adic space attached to Xk.

2 Huber ring

2.1 Valuation Spectra Spv(A)

The references are [Wed], [Mor]

Definition 2.1. Let A be a commutative ring, a (multiplicative) valuation on A is a map
| · | : A→ Γ ∪ {0}, where Γ is a totally ordered abelian group, such that

• |0| = 0, |1| = 1,

• |ab| = |a||b|,

• |a+ b| ≤ max{|a|, |b|}

For ring A, define SpvA as a set to be equivalent class of valuation on A, which can be more
canonically written as

SpvA = {(p, Rv)|p ∈ SpecA,Rv ⊂ κ(p)is a valuation subring with Frac(Rv) = κ(p)}

If we use the letter x to denote an element | · | ∈ SpvA, then we use |f(x)| to denote |f |.
There is a topology on SpvA whose topological basis is defined by

U

(
f1, · · · , fn

g

)
= {|fi| ≤ |g| 6= 0}

Example 2.2. • If K is a field, Spv(K) = RZ(K), the Riemann-Zariski space of K. For
example, if K = K(C) the function field of a geometrically connected, smooth projective
curve over Fq, then RZ(K) ∼= C as a topological space.
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• For general A, SpvA is “fibered over SpecA”, whose fiber is RZ(κ(p)), but the topology is
much more complicated.

• SpvQ = {| · |p, η},η is the trivial valuation, it is the generic point. In particular, we see
SpvQ ∼= SpecZ as topological space, and is spectral.

• SpvZ = {| · |p, η, ηp}, where η is trivial valuation, and ηp is defined by Z → Fp → {1}, the
trivial valuation of Fp composed with projection.

The topology is a bit complicated: for example ηp is specialization of | · |p, called “horizonal
specicalization”, which is a geneneral construction. See [Wed]. And η is the generic point.

• There are some rank 2 points in Spv k[x, y]

Theorem 2.3 (Huber). For any ring A,SpvA is a spectral space and U
(
f1,··· ,fn

g

)
is quasi-compact.

Proof. [Hub] Prop 2.2.

Definition 2.4. A topogical space is called spectral if the one (hence all) of the following holds:

• X is qcqs, sober and have a basis of qc opens.

• X is homeomorphic to SpecA for some ring A.

• X = lim←−Xi where Xi is a finite T0 space, which form an inverse system

Proof. It is Definition 2.3.4 of [?].

2.2 Huber Rings

General rings is not a good place to do non-archimedean geometry or formal geometry, since there
are two many points. Thus we should focus on rings with topology and continuous valuations.

Definition 2.5. • A topological ring is called a Huber ring, if there exists an open subring
A0 such that A0 (with subspace topology) is I-adic for some finitely generated ideal I.

• Any such A0 is called ring of definition.

• Any such I is called ideal of deinition(of A0)

Example 2.6. Examples and nonexamples of Huber rings

(1) Any ring A, with a finitely generated ideal I, then A with I-adic topology is a Huber ring,
the ring of definition is itself.

(2) As a special case of (1), any discrete ring is a Huber ring.

(3) Let k be a field with non-archimedean nontrivial absolute value, then k with its natural
topology is a Huber ring, with A0 = k◦ is the ring of integer, and I = ($) for any 0 < |ϕ| < 1
is an ideal of defintion.

For instantce, Q with p-adic topology is a Huber ring, with a ring of definition Z(p) and ideal
of definition pZ(p)
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(4) k be a non-archimedean field, A affinoid k-algebra, write A as k〈T1, · · · , Tn〉/I, then A is
Huber with a ring of definition image of k◦〈T1, · · · , Tn〉 and (ϕ) the ideal of definition.

(5) Perfectoid ring which will be discussed in the future is a Huber ring.

(6) A counter example: A = Qp[[T ]], A0 = Zp[[T ]] with (p, T )-adic topology seems to be an
example, however, it is not: A with this topology is not a topological ring: Tn → 0 but
Tn/p 6→ 0. Intuitively, the open unit disc is not a affinoid algebra.

(7) Similarly, Zp[[T ]][1/p] is not a Huber ring.

Definition 2.7. Let A be Huber ring (indeed topological ring suffices), a valuation |·| : A→ Γ∪{0}
is called continuous, if for all γ ∈ Γ, B(a, γ) = {b ∈ A||b− a| < γ} is open.

The subset of continuous valuation is denoted by Cont(A).

Theorem 2.8 (Huber). If A is a Huber ring, then Cont(A) is spectral.

Example 2.9. Cont(Qp) consists of one point: the p-adic valuation.
Indeed, the valuation subring is the open subring, hence contains pnZp for some large n and

contains 1, hence contains Zp. It must be Zp since otherwise it is the whole Qp.
However SpvQp contains lots of (non-interesting) point, since a theorem of Chevalley says for

any field extension (for example Qp/Q, SpvQp → SpvQ is surjective.

Example 2.10. Cont(Zp) consists of two points: the p-adic valuation and its horizontal specialza-
tion: Zp → Fp → {0}.

Indeed, consider the support of this valuation, if it is (0), then it is the valuation of Qp, reasoning
as above, if is (p), then it is induced from the valuation of Zp/pZp = Fp, which must be trivial.

Example 2.11. Let k be an algebraically closed nonarchimedean field, then Cont(k〈T 〉) consists
lots of points:

• (Classical Points or Type I points )The classical points: x ∈ M(k〈T 〉) = k◦ (notation
from Section 1.2) gives a continuous valuation: f 7→ |f(x)|.

• (Gauss Points or Type II,III points)For x ∈ k◦, r ∈ (0, 1] the interval in R, there is a
Gauss point xr ∈ Cont(k〈T 〉, defined by

|f(xr)| = sup
y∈D(x,r)

|f(y)|

.

r = 0 recovers classical points and r = 1 is the Gauss norm.

• (Type V points) For each x ∈ k◦, r ∈ (0, 1] and each sign ±, there is a rank 2 points: define
Γ = R>0 × γZ with the lexicographic order, where γ > 1. Then for f ∈ k〈T 〉, write f as∑
an

(T − x)n, define

|f(xr±)| = max
n
|an|rnγ±n

A detailed discussion on this will appear on later talk, together with a complete classification.
However, one should point out that Cont(A) is not a right model for “adic closed unit disk”. The
reason will be clear in the next subsection.
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2.3 Huber pair

Definition 2.12. Let A be a topological ring, S ⊂ A be a subset is called bounded if for any
neighbourhood U of 0, there exists a neighbourhood V of 0 such that SV ⊂ U .

An element is called power bounded, if {a, a2, · · · } is a bounded subset. The subset of all
power bounded element is denoted by A◦.

Proposition 2.13. If A is non-archimedean ring, i.e. A has a basis of 0 consists of additive
subgroup, then A◦ is a subring. It is a union of bounded subring. And A◦ is integrally closed in A.

Example 2.14. Let k be a normed field, then k◦ = {x ∈ k||x| ≤ 1}.

Example 2.15. A◦ needs not te be a bounded subset, for example, take A = Qp[ε]/(ε2), A◦ =
Zp + Qpx.

Example 2.16. A ring A with I-adic topology is bounded, thus all subsets are bounded.
Similarly, A be a Huber ring, then A0 is bounded.

A converse is also true:

Proposition 2.17. Let A be a Huber ring, A0 be an open subring, then A0 is a ring of definition
if and only if A0 is bounded.

Proof. Let A be Huber ring, A0 be a ring of definition, I is an ideal of definition, A′0 be a bounded
subring, suffices to show A′0 is a ring of definition.

For S, T subset of A, define S · T be the additive group generated by all s, t with s ∈ S, t ∈ T .
Assume I is genenerated by a1, · · · , ak, then In ⊂ A′0 for some n. Thus S = {ai1ai2 · · · ain |i1, · · · , in ∈

{1, · · · , k} ∈ A′0.
Let I ′ = A′0 · S be the ideal of A′0 generated by S. We show that I ′ is the ideal of definition of

A′0.
Indeed, (I ′)` is generated by {ai1 · · · ai`m}. Thus (I ′)l = A′0·{ai1 · · · ai`m} ⊃ In ⊃ {ai1 · · · ai`m} =

I(n+1)`. And A′0 is bounded, thus for every s there exists m such that Is ⊃ A′0I
mn ⊃ (I ′)m. Thus

(I ′)l form a neibourhood basis of A′0.

Corollary 2.18. Open subring of ring of definition is a ring of definition.

A relative definition that will be useful later:

Definition 2.19. A Huber ring is called uniform if A◦ is bounded.

Definition 2.20. (1) A is a Huber ring, a subring A+ ⊂ A◦ is called a ring of integral ele-
ments if it is open and integrally closed in A.

(2) A Huber pair is a pair (A,A+) where A is Huber and A+ ⊂ A is a ring of integral elements.

(3) The adic spectrum of a Huber pair is defined as

Spa(A,A+) = {x ∈ Cont(A)||f(x)| ≤ 1 for all f ∈ A+}

Theorem 2.21 (Huber). If (A,A+) is a Huber pair, then Spa(A,A+) is spectral (as a subspace of
Cont(A) or SpvA.
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Example 2.22. Spa(Qp,Zp), Spa(Zp,Zp), Spa(Z,Z)(discrete topology), Spa(Z,Z) (p-adic topol-
ogy), Spa(Q,Z(p)):

Since Cont(Qp) consists of one point, which on Zp is ≤ 1, thus Spa(Qp,Zp) consists of one point.
Other examples are similiar.

Example 2.23. The type V point 01+ ∈ Cont(A) is not in Spa(A,A◦). Since for f = 1 ∈
k◦〈T 〉, |f(01+)| > 1.

For a Huber pair, A+ contains all topological nilpotents:

Definition 2.24. Let A be a topological ring, x ∈ A is called topologically nilpotent, if xn → 0.
The set of all topologically nilpotent element is denoted by A◦◦

Example 2.25. A with I-adic topology, then I ⊂ A◦◦, indeed A◦◦ =
√
I

Example 2.26. A = Qp, A◦◦ = (p).

Proposition 2.27. In any non-archimedean ring, topological nilpotent elements is a radical ideal
of A◦.

Proposition 2.28. Let (A,A+) be a Huber pair, then A◦◦ ⊂ A+.

2.4 Tate rings and analytic Huber rings

Now we discuss a special family of Huber rings. Which is useful for us (contains all pertectoid ring)

Definition 2.29. A Huber ring is called Tate ring if there exists a topologically nilpotent unit.
Any topologically nilpotent unit is called a pseudo-uniformizer

Example 2.30. Examples and non-examples of Tate rings:

(1) Any non-archimedean field is a Tate ring, more generally, any affinoid algebra over a non-
archimedean field is a Tate ring.

(2) An adic ring is almost never a Tate ring. e.g. Zp[[T ]] is not a Tate ring, discrete ring is not a
Tate ring.

(3) A perfectoid ring is a Tate ring

Remark. A complete Tate ring is (non-canonically) equivalent to a Banach ring which admits a
unit in the open unit disk. The norm on a complete Tate ring is defined by

|a| = inf
n∈Z|gna∈A0

2n

A wider class of Huber ring which contains all Tate ring is called analytic Huber ring

Definition 2.31. A Huber ring is called analytic, if the topological nilpotent unit generated the
unit ideal.

Proposition 2.32. The following are equivalent:

(1) A is an analytic Huber ring.
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(2) For every ring of definition A0, each of its ideal of definition generate the unit ideal.

(3) A has no open ideals.

(4) A nas no discrete nonzero topological modules.

Proof. Not deep, see Lemma 1.1.3 of [Ked].

An important feature for analytic rings is that open mapping theorem holds

Proposition 2.33 (Open Mapping Theorem). Let A be a complete analytic Huber ring, M,N are
two complete Hausdorff, first-countable topological A-modules, then any surjective map between
M and N is open.

Proof. [Ked] Theorem 1.1.9.

Remark. An analytic ring needs not to be Huber, for example, one can takeA = Z〈aρ ,
b
ρ ,

x
ρ−1 ,

y
ρ−1 〉/(ax+

by − 1), see Example 1.5.7 of [Ked].

2.5 Complete Huber pairs

Definition 2.34. A Huber ring is called complete, if it is complete as a topological ring, or
equivalently, A0 is I-adically complete, for some (or equivalently, any) ring of definition A0 and its
ideal of definition I.

A Huber pair (A,A+) is called complete Huber pair, if A is complete Huber ring.

We discuss structure sheaf, complete Huber rings will be the most interesting.

Definition 2.35. For a Huber ring A, define completion of A, denoted as Â as completion of A
as a topological ring.

Remark. The completion of topological ring is discussed in [Bou] Chapter 3.5.

As an abelian group, Â can be characterized by lim←−A/I
n, for any ideal of definition I, this

contains A as a dense subring, hence get a ring structure.

Theorem 2.36. Let A be a Huber ring, A0 be any ring of definition, I be any ideal of definition.
Â0 denote the I-adic completion of A0, then

(1) Â0 is isomorphic to the closure of A0 in Â, with subspace topology, as a topological ring. Â0

is an open subring of Â.

(2) Â0 is complete with respect to Î = IÂ0-adic topology.

(3) Â is a complete Huber ring.

It should be mentioned that I is finitely generated is essential in above theorem.
For a complete Huber pair, kind of “Nullstellensatz” holds.

Theorem 2.37 (Huber). Let (A,A+) be a complete Huber pair, then

(1) Spa(A,A+) 6= ∅ unless A = 0.
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(2) (Adic Nullstellensatz) A+ = {f ∈ A||f(x)| ≤ 1 for all x} (This holds for general Huber pair,
see Corrollary III.4.4.4 [Mor])

(3) f ∈ A× if and only if |f(x)| 6= 0 for any x ∈ X.

Moreover we have

Theorem 2.38 (Huber). For any Huber pair (A,A+), Spa(A,A+) ∼= Spa(Â, Â+)

The isomorphism is given by the functoriality of Spa, discussed in the next subsection.

Example 2.39. Spa(Qp,Zp) and Spa(Q,Z(p)), Spa(Z,Z)(p-adic topology) and Spa(Zp,Zp) are
homeomorphic as discussed above.

2.6 Continuous homomorphism of Huber pair

Definition 2.40. Let (A,A+), (B,B+) be two Huber pairs, a continuous homomorphism of
(A,A+) to (B,B+) is a continuous ring homomorphism f : A→ B which sends A+ to B+.

Huber pairs form a category, which plays the rule in theory of adic same (almost) the same
(except there are non sheafy pair) as the category of commutative ring in the theory of schemes.

Adic spectrum then becomes a functor:

Proposition 2.41. A continuous homomorphism of Huber pairs ϕ : (A,A+) → (B,B+) induces
a continuous map Spa(B,B+)→ Spa(A,A+), defined by x 7→ (a 7→ |ϕ(a)|x). This continuous map
is denoted Spa(ϕ) or ϕ∗, and it is a spectral map.

3 Adic Space

Following [?] ,some details are from [Wed] and [Mor]

3.1 Polynomial ring, Tate Algebra and localization of Huber rings

In this subsection we almost follow [Wed] and [Mor]
To understand the section on principal opens, we need to construct the polynomial ring and

localization of Huber ring. To make it more concise, we only consider polynomial ring (and Tate
algebra) with one variable, but same similar construction holds for n-variables (or even infinitely
many variables, see [Wed])

Convention: let S, T be two subsets of a ring, define ST be the additive group generated by all
{st|s ∈ S, t ∈ T}, in particular one can define T 2 or Tn.

Definition 3.1. Let A be a Huber ring, given a finite subset T = {f1, · · · , fn}, such that they
generated an open ideal. There is a topology on A[X] which makes X “a free variables such that
fix is power-bounded”.

More precisely, define a topology on A[X] as follows: for each open neighbourhood U which is
a sub-additive group of 0, define

U [TX] =
{∑

aix
i|ai ∈ T iU

}
Then let U [TX] be the neighbourhood basis of 0 in A[X], which makes A[X] a Huber ring.

Which has the folloing universal properties:
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• fiX is power bounded for all i.

• Let ϕ : A→ B be a continuous homomorphism, with B a Huber ring (indeed non-archimedean
ring suffices) and b ∈ B such that ϕ(fi)b is power-bounded, then there exists a unique con-
tinuous homomorphism A[X]→ B of A-algebra, sends X to b, i.e.

Homcont,A(A[X]T , B) = {b ∈ B|ϕ(fi)b power bounded}

Example 3.2. When T = {1}, Homcont,A(A[X]T , B) = B◦.

Remark. Similar construction works for A non-archimedean ring, see [Wed].

This is a uncompleted version of Tate algebra. The complete version is as follows:

Definition 3.3. Given T as above (they generate an open ideal), then define

A〈X〉T =
{∑

aiX
i|ai ∈ T iU for almost all i for any U

}
.

It similarly carries a topology, satisfying the following properties:

• When A is complete, it is completion of A[X]T .

• For ϕ : A→ B, both are complete Huber ring, then given b ∈ B with ϕ(fi)b bounded, there
exists a unique continuous homomorphism A[X]→ B of A-algebra, sends x to b, i.e.

Homcont,A(A〈X〉T , B) = {b ∈ B|ϕ(fi)b power bounded}

Example 3.4. When A is a non-archimedean field and T = 1, it recovers the classical definition
of Tate algebra. When T = p, it represents a disc with larger radius (radius |1/p|).

Remark. Similar construction works for A non-archimedean ring, see [Wed].

Finally we discuss localization

Proposition 3.5. Let T as above (they generate an open ideal), s ∈ A, then there exists a topology
on As with the following properties

• fi/s is power bounded.

• a continuous homomorphism ϕ : A → B factor through As ⇐⇒ ϕ(s) is invertible and
ϕ(fi)/ϕ(s) is power bounded.

Proof. Just take As = A[X]T /(sX − 1) as a topological ring.

Definition 3.6. As with above topology is denoted A
(
f1,··· ,fn

s

)
. The completion of A

(
f1,··· ,fn

s

)
is denoted A〈 f1,··· ,fns 〉

Remark. Thus, by definition A〈 f1,··· ,fns 〉 = A〈X〉T /closure of (1− sX).
Thus we recover the function ring of rational domain of an affinoid subdomain (since every ideal

is closed).
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3.2 Sheafy pair

For a Huber pair, we now want to define a structure sheaf on X = Spa(A,A+)

Definition 3.7. s ∈ A, T = {f1, · · · , fn} ⊂ A be a finite subset such that T generate an open ideal
in A. Define the subset

U

(
T

s

)
= U

(
f1, · · · , fn

s

)
= {x ∈ Spa(A,A+) = |fi(x)| ≤ |g(x)| 6= 0}

Subsets of this form is called rational subset.

Remark. U
(
T
s

)
form a topological basis for Spa(A,A+), but this is not an easy result.

The next theorem says rational subset is the analogue of D(f) in scheme theory. “U(1/s) =
D(s)”

Theorem 3.8. Let U ⊂ Spa(A,A+) be a rational subset. Then there exists a complete Huber pair
(OX(U),OX(U)+) together with a map (A,A+)→ (OX(U),OX(U)+) such that the map

Spa(OX(U),OX(U)+)→ Spa(A,A+)

is final among all the maps factors through U . Moreover, it is a homeomorphism onto U .

Proof. Indeed, just take A = A〈 f1,··· ,fns 〉 with A+〈 f1,··· ,fns 〉 image of A+[TX].

The universal property in the theorem implies that the ring the (OX(U),OX(U)+) only de-
pends on U , and for rational subsets V ⊂ U , there is a restriction map (OX(U),OX(U)+) →
(OX(V ),OX(V )+).

Now, since rational subset forms a basis of the topology, we can define a structure presheaf OX
on Spa(A,A+),

OX(W ) = lim←−
U⊂W rational

OX(U)

Remark. • From definition, we see that the structure presheaf on Spa(A,A+) is the same as

the structure sheaf on Spa(Â, Â+).

• The structure sheaf is a sheaf of sheaf of complete topological rings, as projective limits of
complete rings are complete, see [Bou] Chapter 2.3.

Example 3.9. The global section of OX is Â. This is slightly different from the theory of schemes.

Definition 3.10. A complete Huber pair is called sheafy it OX defined above is a sheaf of topo-
logical rings.

Theorem 3.11. A Huber pair is sheafy in the following situation:

(1) (Schemes)A is discrete.

(2) (Formal schemes)A is adic with a finitely generated ideal of definition

(3) (Rigid Spaces)A is Tate and strongly Notherian. That is A〈T1, · · · , Tn〉 is Noetherian for
all n ≥ 0. (for example, A is a non-archimedean field)

Remark. There will be other sheafy pair(stably uniform), which will be discussed later.
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3.3 Adic Space

Before make global definition of adic space, we mentions some properties of stalk of the structure
presheaf

Proposition 3.12. The stalk of the presheaf OX at x ∈ X = Spa(A,A+), denoted as OX,x, has
the following properties.

• It is a local ring, with a valuation | · | inherit from all OX(U), x ∈ U . The support of the
valuation is the maximal ideal.

• The residue field of the local ring is the completion of the residue field of x.

• Continuous homomorphism of Huber pair induces local and continuous on stalks, compatible
with valuation

Globalize these, we can define adic spaces:

Definition 3.13. The category V is a category whose object consists of triples (X,OX , |·|x(x ∈ X)).
Where (X,OX) is a locally topologically ringed space, and |·|x is a valuation on OX,x, whose support
is the maximal ideal.

A morphism f : X → Y in category V is a morphism of locally topologically ringed space
compatible with valuations.

Remark. Without the sheaf properties, one can still define a category Vpre.

Definition 3.14. • An affinoid adic space is an object in the category V which is isomorphic
to Spa(A,A+).

• An adic space is an object in the category V which is locally an affinoid adic space.

Example 3.15. There exists “adicfication” functors: from the category of schemes, adic Noetherian
formal schemes, rigid analytic space to adic spaces.
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